You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
8.5 KiB
298 lines
8.5 KiB
2 years ago
|
*> \brief \b CLATM6
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
|
||
|
* BETA, WX, WY, S, DIF )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER LDA, LDX, LDY, N, TYPE
|
||
|
* COMPLEX ALPHA, BETA, WX, WY
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL DIF( * ), S( * )
|
||
|
* COMPLEX A( LDA, * ), B( LDA, * ), X( LDX, * ),
|
||
|
* $ Y( LDY, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLATM6 generates test matrices for the generalized eigenvalue
|
||
|
*> problem, their corresponding right and left eigenvector matrices,
|
||
|
*> and also reciprocal condition numbers for all eigenvalues and
|
||
|
*> the reciprocal condition numbers of eigenvectors corresponding to
|
||
|
*> the 1th and 5th eigenvalues.
|
||
|
*>
|
||
|
*> Test Matrices
|
||
|
*> =============
|
||
|
*>
|
||
|
*> Two kinds of test matrix pairs
|
||
|
*> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
|
||
|
*> are used in the tests:
|
||
|
*>
|
||
|
*> Type 1:
|
||
|
*> Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
|
||
|
*> 0 2+a 0 0 0 0 1 0 0 0
|
||
|
*> 0 0 3+a 0 0 0 0 1 0 0
|
||
|
*> 0 0 0 4+a 0 0 0 0 1 0
|
||
|
*> 0 0 0 0 5+a , 0 0 0 0 1
|
||
|
*> and Type 2:
|
||
|
*> Da = 1+i 0 0 0 0 Db = 1 0 0 0 0
|
||
|
*> 0 1-i 0 0 0 0 1 0 0 0
|
||
|
*> 0 0 1 0 0 0 0 1 0 0
|
||
|
*> 0 0 0 (1+a)+(1+b)i 0 0 0 0 1 0
|
||
|
*> 0 0 0 0 (1+a)-(1+b)i, 0 0 0 0 1 .
|
||
|
*>
|
||
|
*> In both cases the same inverse(YH) and inverse(X) are used to compute
|
||
|
*> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
|
||
|
*>
|
||
|
*> YH: = 1 0 -y y -y X = 1 0 -x -x x
|
||
|
*> 0 1 -y y -y 0 1 x -x -x
|
||
|
*> 0 0 1 0 0 0 0 1 0 0
|
||
|
*> 0 0 0 1 0 0 0 0 1 0
|
||
|
*> 0 0 0 0 1, 0 0 0 0 1 , where
|
||
|
*>
|
||
|
*> a, b, x and y will have all values independently of each other.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TYPE
|
||
|
*> \verbatim
|
||
|
*> TYPE is INTEGER
|
||
|
*> Specifies the problem type (see further details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> Size of the matrices A and B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA, N).
|
||
|
*> On exit A N-by-N is initialized according to TYPE.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A and of B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (LDA, N).
|
||
|
*> On exit B N-by-N is initialized according to TYPE.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX array, dimension (LDX, N).
|
||
|
*> On exit X is the N-by-N matrix of right eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Y
|
||
|
*> \verbatim
|
||
|
*> Y is COMPLEX array, dimension (LDY, N).
|
||
|
*> On exit Y is the N-by-N matrix of left eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDY
|
||
|
*> \verbatim
|
||
|
*> LDY is INTEGER
|
||
|
*> The leading dimension of Y.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ALPHA
|
||
|
*> \verbatim
|
||
|
*> ALPHA is COMPLEX
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is COMPLEX
|
||
|
*>
|
||
|
*> Weighting constants for matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] WX
|
||
|
*> \verbatim
|
||
|
*> WX is COMPLEX
|
||
|
*> Constant for right eigenvector matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] WY
|
||
|
*> \verbatim
|
||
|
*> WY is COMPLEX
|
||
|
*> Constant for left eigenvector matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] S
|
||
|
*> \verbatim
|
||
|
*> S is REAL array, dimension (N)
|
||
|
*> S(i) is the reciprocal condition number for eigenvalue i.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] DIF
|
||
|
*> \verbatim
|
||
|
*> DIF is REAL array, dimension (N)
|
||
|
*> DIF(i) is the reciprocal condition number for eigenvector i.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_matgen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
|
||
|
$ BETA, WX, WY, S, DIF )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER LDA, LDX, LDY, N, TYPE
|
||
|
COMPLEX ALPHA, BETA, WX, WY
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL DIF( * ), S( * )
|
||
|
COMPLEX A( LDA, * ), B( LDA, * ), X( LDX, * ),
|
||
|
$ Y( LDY, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL RONE, TWO, THREE
|
||
|
PARAMETER ( RONE = 1.0E+0, TWO = 2.0E+0, THREE = 3.0E+0 )
|
||
|
COMPLEX ZERO, ONE
|
||
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
|
||
|
$ ONE = ( 1.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, INFO, J
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
REAL RWORK( 50 )
|
||
|
COMPLEX WORK( 26 ), Z( 8, 8 )
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC CABS, CMPLX, CONJG, REAL, SQRT
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGESVD, CLACPY, CLAKF2
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Generate test problem ...
|
||
|
* (Da, Db) ...
|
||
|
*
|
||
|
DO 20 I = 1, N
|
||
|
DO 10 J = 1, N
|
||
|
*
|
||
|
IF( I.EQ.J ) THEN
|
||
|
A( I, I ) = CMPLX( I ) + ALPHA
|
||
|
B( I, I ) = ONE
|
||
|
ELSE
|
||
|
A( I, J ) = ZERO
|
||
|
B( I, J ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
IF( TYPE.EQ.2 ) THEN
|
||
|
A( 1, 1 ) = CMPLX( RONE, RONE )
|
||
|
A( 2, 2 ) = CONJG( A( 1, 1 ) )
|
||
|
A( 3, 3 ) = ONE
|
||
|
A( 4, 4 ) = CMPLX( REAL( ONE+ALPHA ), REAL( ONE+BETA ) )
|
||
|
A( 5, 5 ) = CONJG( A( 4, 4 ) )
|
||
|
END IF
|
||
|
*
|
||
|
* Form X and Y
|
||
|
*
|
||
|
CALL CLACPY( 'F', N, N, B, LDA, Y, LDY )
|
||
|
Y( 3, 1 ) = -CONJG( WY )
|
||
|
Y( 4, 1 ) = CONJG( WY )
|
||
|
Y( 5, 1 ) = -CONJG( WY )
|
||
|
Y( 3, 2 ) = -CONJG( WY )
|
||
|
Y( 4, 2 ) = CONJG( WY )
|
||
|
Y( 5, 2 ) = -CONJG( WY )
|
||
|
*
|
||
|
CALL CLACPY( 'F', N, N, B, LDA, X, LDX )
|
||
|
X( 1, 3 ) = -WX
|
||
|
X( 1, 4 ) = -WX
|
||
|
X( 1, 5 ) = WX
|
||
|
X( 2, 3 ) = WX
|
||
|
X( 2, 4 ) = -WX
|
||
|
X( 2, 5 ) = -WX
|
||
|
*
|
||
|
* Form (A, B)
|
||
|
*
|
||
|
B( 1, 3 ) = WX + WY
|
||
|
B( 2, 3 ) = -WX + WY
|
||
|
B( 1, 4 ) = WX - WY
|
||
|
B( 2, 4 ) = WX - WY
|
||
|
B( 1, 5 ) = -WX + WY
|
||
|
B( 2, 5 ) = WX + WY
|
||
|
A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 )
|
||
|
A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 )
|
||
|
A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 )
|
||
|
A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 )
|
||
|
A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 )
|
||
|
A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 )
|
||
|
*
|
||
|
* Compute condition numbers
|
||
|
*
|
||
|
S( 1 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
|
||
|
$ ( RONE+CABS( A( 1, 1 ) )*CABS( A( 1, 1 ) ) ) )
|
||
|
S( 2 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
|
||
|
$ ( RONE+CABS( A( 2, 2 ) )*CABS( A( 2, 2 ) ) ) )
|
||
|
S( 3 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
|
||
|
$ ( RONE+CABS( A( 3, 3 ) )*CABS( A( 3, 3 ) ) ) )
|
||
|
S( 4 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
|
||
|
$ ( RONE+CABS( A( 4, 4 ) )*CABS( A( 4, 4 ) ) ) )
|
||
|
S( 5 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
|
||
|
$ ( RONE+CABS( A( 5, 5 ) )*CABS( A( 5, 5 ) ) ) )
|
||
|
*
|
||
|
CALL CLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 8 )
|
||
|
CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
|
||
|
$ WORK( 3 ), 24, RWORK( 9 ), INFO )
|
||
|
DIF( 1 ) = RWORK( 8 )
|
||
|
*
|
||
|
CALL CLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 8 )
|
||
|
CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
|
||
|
$ WORK( 3 ), 24, RWORK( 9 ), INFO )
|
||
|
DIF( 5 ) = RWORK( 8 )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLATM6
|
||
|
*
|
||
|
END
|