You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
4.0 KiB
145 lines
4.0 KiB
2 years ago
|
*> \brief \b SLARAN
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* REAL FUNCTION SLARAN( ISEED )
|
||
|
*
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER ISEED( 4 )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLARAN returns a random real number from a uniform (0,1)
|
||
|
*> distribution.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> On entry, the seed of the random number generator; the array
|
||
|
*> elements must be between 0 and 4095, and ISEED(4) must be
|
||
|
*> odd.
|
||
|
*> On exit, the seed is updated.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup real_matgen
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> This routine uses a multiplicative congruential method with modulus
|
||
|
*> 2**48 and multiplier 33952834046453 (see G.S.Fishman,
|
||
|
*> 'Multiplicative congruential random number generators with modulus
|
||
|
*> 2**b: an exhaustive analysis for b = 32 and a partial analysis for
|
||
|
*> b = 48', Math. Comp. 189, pp 331-344, 1990).
|
||
|
*>
|
||
|
*> 48-bit integers are stored in 4 integer array elements with 12 bits
|
||
|
*> per element. Hence the routine is portable across machines with
|
||
|
*> integers of 32 bits or more.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
REAL FUNCTION SLARAN( ISEED )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER M1, M2, M3, M4
|
||
|
PARAMETER ( M1 = 494, M2 = 322, M3 = 2508, M4 = 2549 )
|
||
|
REAL ONE
|
||
|
PARAMETER ( ONE = 1.0E+0 )
|
||
|
INTEGER IPW2
|
||
|
REAL R
|
||
|
PARAMETER ( IPW2 = 4096, R = ONE / IPW2 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER IT1, IT2, IT3, IT4
|
||
|
REAL RNDOUT
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MOD, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* multiply the seed by the multiplier modulo 2**48
|
||
|
*
|
||
|
IT4 = ISEED( 4 )*M4
|
||
|
IT3 = IT4 / IPW2
|
||
|
IT4 = IT4 - IPW2*IT3
|
||
|
IT3 = IT3 + ISEED( 3 )*M4 + ISEED( 4 )*M3
|
||
|
IT2 = IT3 / IPW2
|
||
|
IT3 = IT3 - IPW2*IT2
|
||
|
IT2 = IT2 + ISEED( 2 )*M4 + ISEED( 3 )*M3 + ISEED( 4 )*M2
|
||
|
IT1 = IT2 / IPW2
|
||
|
IT2 = IT2 - IPW2*IT1
|
||
|
IT1 = IT1 + ISEED( 1 )*M4 + ISEED( 2 )*M3 + ISEED( 3 )*M2 +
|
||
|
$ ISEED( 4 )*M1
|
||
|
IT1 = MOD( IT1, IPW2 )
|
||
|
*
|
||
|
* return updated seed
|
||
|
*
|
||
|
ISEED( 1 ) = IT1
|
||
|
ISEED( 2 ) = IT2
|
||
|
ISEED( 3 ) = IT3
|
||
|
ISEED( 4 ) = IT4
|
||
|
*
|
||
|
* convert 48-bit integer to a real number in the interval (0,1)
|
||
|
*
|
||
|
RNDOUT = R*( REAL( IT1 )+R*( REAL( IT2 )+R*( REAL( IT3 )+R*
|
||
|
$ ( REAL( IT4 ) ) ) ) )
|
||
|
*
|
||
|
IF (RNDOUT.EQ.1.0) THEN
|
||
|
* If a real number has n bits of precision, and the first
|
||
|
* n bits of the 48-bit integer above happen to be all 1 (which
|
||
|
* will occur about once every 2**n calls), then SLARAN will
|
||
|
* be rounded to exactly 1.0. In IEEE single precision arithmetic,
|
||
|
* this will happen relatively often since n = 24.
|
||
|
* Since SLARAN is not supposed to return exactly 0.0 or 1.0
|
||
|
* (and some callers of SLARAN, such as CLARND, depend on that),
|
||
|
* the statistically correct thing to do in this situation is
|
||
|
* simply to iterate again.
|
||
|
* N.B. the case SLARAN = 0.0 should not be possible.
|
||
|
*
|
||
|
GOTO 10
|
||
|
END IF
|
||
|
*
|
||
|
SLARAN = RNDOUT
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLARAN
|
||
|
*
|
||
|
END
|