You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
278 lines
7.6 KiB
278 lines
7.6 KiB
2 years ago
|
!> \brief \b ZROTG generates a Givens rotation with real cosine and complex sine.
|
||
|
!
|
||
|
! =========== DOCUMENTATION ===========
|
||
|
!
|
||
|
! Online html documentation available at
|
||
|
! http://www.netlib.org/lapack/explore-html/
|
||
|
!
|
||
|
! Definition:
|
||
|
! ===========
|
||
|
!
|
||
|
! ZROTG constructs a plane rotation
|
||
|
! [ c s ] [ a ] = [ r ]
|
||
|
! [ -conjg(s) c ] [ b ] [ 0 ]
|
||
|
! where c is real, s is complex, and c**2 + conjg(s)*s = 1.
|
||
|
!
|
||
|
!> \par Purpose:
|
||
|
! =============
|
||
|
!>
|
||
|
!> \verbatim
|
||
|
!>
|
||
|
!> The computation uses the formulas
|
||
|
!> |x| = sqrt( Re(x)**2 + Im(x)**2 )
|
||
|
!> sgn(x) = x / |x| if x /= 0
|
||
|
!> = 1 if x = 0
|
||
|
!> c = |a| / sqrt(|a|**2 + |b|**2)
|
||
|
!> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2)
|
||
|
!> r = sgn(a)*sqrt(|a|**2 + |b|**2)
|
||
|
!> When a and b are real and r /= 0, the formulas simplify to
|
||
|
!> c = a / r
|
||
|
!> s = b / r
|
||
|
!> the same as in DROTG when |a| > |b|. When |b| >= |a|, the
|
||
|
!> sign of c and s will be different from those computed by DROTG
|
||
|
!> if the signs of a and b are not the same.
|
||
|
!>
|
||
|
!> \endverbatim
|
||
|
!
|
||
|
! Arguments:
|
||
|
! ==========
|
||
|
!
|
||
|
!> \param[in,out] A
|
||
|
!> \verbatim
|
||
|
!> A is DOUBLE COMPLEX
|
||
|
!> On entry, the scalar a.
|
||
|
!> On exit, the scalar r.
|
||
|
!> \endverbatim
|
||
|
!>
|
||
|
!> \param[in] B
|
||
|
!> \verbatim
|
||
|
!> B is DOUBLE COMPLEX
|
||
|
!> The scalar b.
|
||
|
!> \endverbatim
|
||
|
!>
|
||
|
!> \param[out] C
|
||
|
!> \verbatim
|
||
|
!> C is DOUBLE PRECISION
|
||
|
!> The scalar c.
|
||
|
!> \endverbatim
|
||
|
!>
|
||
|
!> \param[out] S
|
||
|
!> \verbatim
|
||
|
!> S is DOUBLE COMPLEX
|
||
|
!> The scalar s.
|
||
|
!> \endverbatim
|
||
|
!
|
||
|
! Authors:
|
||
|
! ========
|
||
|
!
|
||
|
!> \author Weslley Pereira, University of Colorado Denver, USA
|
||
|
!
|
||
|
!> \date December 2021
|
||
|
!
|
||
|
!> \ingroup single_blas_level1
|
||
|
!
|
||
|
!> \par Further Details:
|
||
|
! =====================
|
||
|
!>
|
||
|
!> \verbatim
|
||
|
!>
|
||
|
!> Based on the algorithm from
|
||
|
!>
|
||
|
!> Anderson E. (2017)
|
||
|
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
|
||
|
!> ACM Trans Math Softw 44:1--28
|
||
|
!> https://doi.org/10.1145/3061665
|
||
|
!>
|
||
|
!> \endverbatim
|
||
|
!
|
||
|
! =====================================================================
|
||
|
subroutine ZROTG( a, b, c, s )
|
||
|
integer, parameter :: wp = kind(1.d0)
|
||
|
!
|
||
|
! -- Reference BLAS level1 routine --
|
||
|
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||
|
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
!
|
||
|
! .. Constants ..
|
||
|
real(wp), parameter :: zero = 0.0_wp
|
||
|
real(wp), parameter :: one = 1.0_wp
|
||
|
complex(wp), parameter :: czero = 0.0_wp
|
||
|
! ..
|
||
|
! .. Scaling constants ..
|
||
|
real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( &
|
||
|
minexponent(0._wp)-1, &
|
||
|
1-maxexponent(0._wp) &
|
||
|
)
|
||
|
real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( &
|
||
|
1-minexponent(0._wp), &
|
||
|
maxexponent(0._wp)-1 &
|
||
|
)
|
||
|
real(wp), parameter :: rtmin = sqrt( safmin )
|
||
|
! ..
|
||
|
! .. Scalar Arguments ..
|
||
|
real(wp) :: c
|
||
|
complex(wp) :: a, b, s
|
||
|
! ..
|
||
|
! .. Local Scalars ..
|
||
|
real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmax
|
||
|
complex(wp) :: f, fs, g, gs, r, t
|
||
|
! ..
|
||
|
! .. Intrinsic Functions ..
|
||
|
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
|
||
|
! ..
|
||
|
! .. Statement Functions ..
|
||
|
real(wp) :: ABSSQ
|
||
|
! ..
|
||
|
! .. Statement Function definitions ..
|
||
|
ABSSQ( t ) = real( t )**2 + aimag( t )**2
|
||
|
! ..
|
||
|
! .. Executable Statements ..
|
||
|
!
|
||
|
f = a
|
||
|
g = b
|
||
|
if( g == czero ) then
|
||
|
c = one
|
||
|
s = czero
|
||
|
r = f
|
||
|
else if( f == czero ) then
|
||
|
c = zero
|
||
|
if( real(g) == zero ) then
|
||
|
r = abs(aimag(g))
|
||
|
s = conjg( g ) / r
|
||
|
elseif( aimag(g) == zero ) then
|
||
|
r = abs(real(g))
|
||
|
s = conjg( g ) / r
|
||
|
else
|
||
|
g1 = max( abs(real(g)), abs(aimag(g)) )
|
||
|
rtmax = sqrt( safmax/2 )
|
||
|
if( g1 > rtmin .and. g1 < rtmax ) then
|
||
|
!
|
||
|
! Use unscaled algorithm
|
||
|
!
|
||
|
! The following two lines can be replaced by `d = abs( g )`.
|
||
|
! This algorithm do not use the intrinsic complex abs.
|
||
|
g2 = ABSSQ( g )
|
||
|
d = sqrt( g2 )
|
||
|
s = conjg( g ) / d
|
||
|
r = d
|
||
|
else
|
||
|
!
|
||
|
! Use scaled algorithm
|
||
|
!
|
||
|
u = min( safmax, max( safmin, g1 ) )
|
||
|
gs = g / u
|
||
|
! The following two lines can be replaced by `d = abs( gs )`.
|
||
|
! This algorithm do not use the intrinsic complex abs.
|
||
|
g2 = ABSSQ( gs )
|
||
|
d = sqrt( g2 )
|
||
|
s = conjg( gs ) / d
|
||
|
r = d*u
|
||
|
end if
|
||
|
end if
|
||
|
else
|
||
|
f1 = max( abs(real(f)), abs(aimag(f)) )
|
||
|
g1 = max( abs(real(g)), abs(aimag(g)) )
|
||
|
rtmax = sqrt( safmax/4 )
|
||
|
if( f1 > rtmin .and. f1 < rtmax .and. &
|
||
|
g1 > rtmin .and. g1 < rtmax ) then
|
||
|
!
|
||
|
! Use unscaled algorithm
|
||
|
!
|
||
|
f2 = ABSSQ( f )
|
||
|
g2 = ABSSQ( g )
|
||
|
h2 = f2 + g2
|
||
|
! safmin <= f2 <= h2 <= safmax
|
||
|
if( f2 >= h2 * safmin ) then
|
||
|
! safmin <= f2/h2 <= 1, and h2/f2 is finite
|
||
|
c = sqrt( f2 / h2 )
|
||
|
r = f / c
|
||
|
rtmax = rtmax * 2
|
||
|
if( f2 > rtmin .and. h2 < rtmax ) then
|
||
|
! safmin <= sqrt( f2*h2 ) <= safmax
|
||
|
s = conjg( g ) * ( f / sqrt( f2*h2 ) )
|
||
|
else
|
||
|
s = conjg( g ) * ( r / h2 )
|
||
|
end if
|
||
|
else
|
||
|
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
|
||
|
! Moreover,
|
||
|
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
|
||
|
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
|
||
|
! Also,
|
||
|
! g2 >> f2, which means that h2 = g2.
|
||
|
d = sqrt( f2 * h2 )
|
||
|
c = f2 / d
|
||
|
if( c >= safmin ) then
|
||
|
r = f / c
|
||
|
else
|
||
|
! f2 / sqrt(f2 * h2) < safmin, then
|
||
|
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
|
||
|
r = f * ( h2 / d )
|
||
|
end if
|
||
|
s = conjg( g ) * ( f / d )
|
||
|
end if
|
||
|
else
|
||
|
!
|
||
|
! Use scaled algorithm
|
||
|
!
|
||
|
u = min( safmax, max( safmin, f1, g1 ) )
|
||
|
gs = g / u
|
||
|
g2 = ABSSQ( gs )
|
||
|
if( f1 / u < rtmin ) then
|
||
|
!
|
||
|
! f is not well-scaled when scaled by g1.
|
||
|
! Use a different scaling for f.
|
||
|
!
|
||
|
v = min( safmax, max( safmin, f1 ) )
|
||
|
w = v / u
|
||
|
fs = f / v
|
||
|
f2 = ABSSQ( fs )
|
||
|
h2 = f2*w**2 + g2
|
||
|
else
|
||
|
!
|
||
|
! Otherwise use the same scaling for f and g.
|
||
|
!
|
||
|
w = one
|
||
|
fs = f / u
|
||
|
f2 = ABSSQ( fs )
|
||
|
h2 = f2 + g2
|
||
|
end if
|
||
|
! safmin <= f2 <= h2 <= safmax
|
||
|
if( f2 >= h2 * safmin ) then
|
||
|
! safmin <= f2/h2 <= 1, and h2/f2 is finite
|
||
|
c = sqrt( f2 / h2 )
|
||
|
r = fs / c
|
||
|
rtmax = rtmax * 2
|
||
|
if( f2 > rtmin .and. h2 < rtmax ) then
|
||
|
! safmin <= sqrt( f2*h2 ) <= safmax
|
||
|
s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
|
||
|
else
|
||
|
s = conjg( gs ) * ( r / h2 )
|
||
|
end if
|
||
|
else
|
||
|
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
|
||
|
! Moreover,
|
||
|
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
|
||
|
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
|
||
|
! Also,
|
||
|
! g2 >> f2, which means that h2 = g2.
|
||
|
d = sqrt( f2 * h2 )
|
||
|
c = f2 / d
|
||
|
if( c >= safmin ) then
|
||
|
r = fs / c
|
||
|
else
|
||
|
! f2 / sqrt(f2 * h2) < safmin, then
|
||
|
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
|
||
|
r = fs * ( h2 / d )
|
||
|
end if
|
||
|
s = conjg( gs ) * ( fs / d )
|
||
|
end if
|
||
|
! Rescale c and r
|
||
|
c = c * w
|
||
|
r = r * u
|
||
|
end if
|
||
|
end if
|
||
|
a = r
|
||
|
return
|
||
|
end subroutine
|