You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
8.8 KiB
311 lines
8.8 KiB
2 years ago
|
*> \brief \b CGEQPF
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CGEQPF + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqpf.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqpf.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqpf.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER JPVT( * )
|
||
|
* REAL RWORK( * )
|
||
|
* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> This routine is deprecated and has been replaced by routine CGEQP3.
|
||
|
*>
|
||
|
*> CGEQPF computes a QR factorization with column pivoting of a
|
||
|
*> complex M-by-N matrix A: A*P = Q*R.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit, the upper triangle of the array contains the
|
||
|
*> min(M,N)-by-N upper triangular matrix R; the elements
|
||
|
*> below the diagonal, together with the array TAU,
|
||
|
*> represent the unitary matrix Q as a product of
|
||
|
*> min(m,n) elementary reflectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] JPVT
|
||
|
*> \verbatim
|
||
|
*> JPVT is INTEGER array, dimension (N)
|
||
|
*> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
|
||
|
*> to the front of A*P (a leading column); if JPVT(i) = 0,
|
||
|
*> the i-th column of A is a free column.
|
||
|
*> On exit, if JPVT(i) = k, then the i-th column of A*P
|
||
|
*> was the k-th column of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is COMPLEX array, dimension (min(M,N))
|
||
|
*> The scalar factors of the elementary reflectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexGEcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrix Q is represented as a product of elementary reflectors
|
||
|
*>
|
||
|
*> Q = H(1) H(2) . . . H(n)
|
||
|
*>
|
||
|
*> Each H(i) has the form
|
||
|
*>
|
||
|
*> H = I - tau * v * v**H
|
||
|
*>
|
||
|
*> where tau is a complex scalar, and v is a complex vector with
|
||
|
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
|
||
|
*>
|
||
|
*> The matrix P is represented in jpvt as follows: If
|
||
|
*> jpvt(j) = i
|
||
|
*> then the jth column of P is the ith canonical unit vector.
|
||
|
*>
|
||
|
*> Partial column norm updating strategy modified by
|
||
|
*> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
|
||
|
*> University of Zagreb, Croatia.
|
||
|
*> -- April 2011 --
|
||
|
*> For more details see LAPACK Working Note 176.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER JPVT( * )
|
||
|
REAL RWORK( * )
|
||
|
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, ITEMP, J, MA, MN, PVT
|
||
|
REAL TEMP, TEMP2, TOL3Z
|
||
|
COMPLEX AII
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEQR2, CLARF, CLARFG, CSWAP, CUNM2R, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, CMPLX, CONJG, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ISAMAX
|
||
|
REAL SCNRM2, SLAMCH
|
||
|
EXTERNAL ISAMAX, SCNRM2, SLAMCH
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CGEQPF', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
MN = MIN( M, N )
|
||
|
TOL3Z = SQRT(SLAMCH('Epsilon'))
|
||
|
*
|
||
|
* Move initial columns up front
|
||
|
*
|
||
|
ITEMP = 1
|
||
|
DO 10 I = 1, N
|
||
|
IF( JPVT( I ).NE.0 ) THEN
|
||
|
IF( I.NE.ITEMP ) THEN
|
||
|
CALL CSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 )
|
||
|
JPVT( I ) = JPVT( ITEMP )
|
||
|
JPVT( ITEMP ) = I
|
||
|
ELSE
|
||
|
JPVT( I ) = I
|
||
|
END IF
|
||
|
ITEMP = ITEMP + 1
|
||
|
ELSE
|
||
|
JPVT( I ) = I
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
ITEMP = ITEMP - 1
|
||
|
*
|
||
|
* Compute the QR factorization and update remaining columns
|
||
|
*
|
||
|
IF( ITEMP.GT.0 ) THEN
|
||
|
MA = MIN( ITEMP, M )
|
||
|
CALL CGEQR2( M, MA, A, LDA, TAU, WORK, INFO )
|
||
|
IF( MA.LT.N ) THEN
|
||
|
CALL CUNM2R( 'Left', 'Conjugate transpose', M, N-MA, MA, A,
|
||
|
$ LDA, TAU, A( 1, MA+1 ), LDA, WORK, INFO )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( ITEMP.LT.MN ) THEN
|
||
|
*
|
||
|
* Initialize partial column norms. The first n elements of
|
||
|
* work store the exact column norms.
|
||
|
*
|
||
|
DO 20 I = ITEMP + 1, N
|
||
|
RWORK( I ) = SCNRM2( M-ITEMP, A( ITEMP+1, I ), 1 )
|
||
|
RWORK( N+I ) = RWORK( I )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Compute factorization
|
||
|
*
|
||
|
DO 40 I = ITEMP + 1, MN
|
||
|
*
|
||
|
* Determine ith pivot column and swap if necessary
|
||
|
*
|
||
|
PVT = ( I-1 ) + ISAMAX( N-I+1, RWORK( I ), 1 )
|
||
|
*
|
||
|
IF( PVT.NE.I ) THEN
|
||
|
CALL CSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
|
||
|
ITEMP = JPVT( PVT )
|
||
|
JPVT( PVT ) = JPVT( I )
|
||
|
JPVT( I ) = ITEMP
|
||
|
RWORK( PVT ) = RWORK( I )
|
||
|
RWORK( N+PVT ) = RWORK( N+I )
|
||
|
END IF
|
||
|
*
|
||
|
* Generate elementary reflector H(i)
|
||
|
*
|
||
|
AII = A( I, I )
|
||
|
CALL CLARFG( M-I+1, AII, A( MIN( I+1, M ), I ), 1,
|
||
|
$ TAU( I ) )
|
||
|
A( I, I ) = AII
|
||
|
*
|
||
|
IF( I.LT.N ) THEN
|
||
|
*
|
||
|
* Apply H(i) to A(i:m,i+1:n) from the left
|
||
|
*
|
||
|
AII = A( I, I )
|
||
|
A( I, I ) = CMPLX( ONE )
|
||
|
CALL CLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
|
||
|
$ CONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
|
||
|
A( I, I ) = AII
|
||
|
END IF
|
||
|
*
|
||
|
* Update partial column norms
|
||
|
*
|
||
|
DO 30 J = I + 1, N
|
||
|
IF( RWORK( J ).NE.ZERO ) THEN
|
||
|
*
|
||
|
* NOTE: The following 4 lines follow from the analysis in
|
||
|
* Lapack Working Note 176.
|
||
|
*
|
||
|
TEMP = ABS( A( I, J ) ) / RWORK( J )
|
||
|
TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
|
||
|
TEMP2 = TEMP*( RWORK( J ) / RWORK( N+J ) )**2
|
||
|
IF( TEMP2 .LE. TOL3Z ) THEN
|
||
|
IF( M-I.GT.0 ) THEN
|
||
|
RWORK( J ) = SCNRM2( M-I, A( I+1, J ), 1 )
|
||
|
RWORK( N+J ) = RWORK( J )
|
||
|
ELSE
|
||
|
RWORK( J ) = ZERO
|
||
|
RWORK( N+J ) = ZERO
|
||
|
END IF
|
||
|
ELSE
|
||
|
RWORK( J ) = RWORK( J )*SQRT( TEMP )
|
||
|
END IF
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGEQPF
|
||
|
*
|
||
|
END
|