You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
7.9 KiB
277 lines
7.9 KiB
2 years ago
|
C> \brief \b SGETRF VARIANT: iterative version of Sivan Toledo's recursive LU algorithm
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* REAL A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
C>\details \b Purpose:
|
||
|
C>\verbatim
|
||
|
C>
|
||
|
C> SGETRF computes an LU factorization of a general M-by-N matrix A
|
||
|
C> using partial pivoting with row interchanges.
|
||
|
C>
|
||
|
C> The factorization has the form
|
||
|
C> A = P * L * U
|
||
|
C> where P is a permutation matrix, L is lower triangular with unit
|
||
|
C> diagonal elements (lower trapezoidal if m > n), and U is upper
|
||
|
C> triangular (upper trapezoidal if m < n).
|
||
|
C>
|
||
|
C> This code implements an iterative version of Sivan Toledo's recursive
|
||
|
C> LU algorithm[1]. For square matrices, this iterative versions should
|
||
|
C> be within a factor of two of the optimum number of memory transfers.
|
||
|
C>
|
||
|
C> The pattern is as follows, with the large blocks of U being updated
|
||
|
C> in one call to STRSM, and the dotted lines denoting sections that
|
||
|
C> have had all pending permutations applied:
|
||
|
C>
|
||
|
C> 1 2 3 4 5 6 7 8
|
||
|
C> +-+-+---+-------+------
|
||
|
C> | |1| | |
|
||
|
C> |.+-+ 2 | |
|
||
|
C> | | | | |
|
||
|
C> |.|.+-+-+ 4 |
|
||
|
C> | | | |1| |
|
||
|
C> | | |.+-+ |
|
||
|
C> | | | | | |
|
||
|
C> |.|.|.|.+-+-+---+ 8
|
||
|
C> | | | | | |1| |
|
||
|
C> | | | | |.+-+ 2 |
|
||
|
C> | | | | | | | |
|
||
|
C> | | | | |.|.+-+-+
|
||
|
C> | | | | | | | |1|
|
||
|
C> | | | | | | |.+-+
|
||
|
C> | | | | | | | | |
|
||
|
C> |.|.|.|.|.|.|.|.+-----
|
||
|
C> | | | | | | | | |
|
||
|
C>
|
||
|
C> The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in
|
||
|
C> the binary expansion of the current column. Each Schur update is
|
||
|
C> applied as soon as the necessary portion of U is available.
|
||
|
C>
|
||
|
C> [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with
|
||
|
C> Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997),
|
||
|
C> 1065-1081. http://dx.doi.org/10.1137/S0895479896297744
|
||
|
C>
|
||
|
C>\endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
C> \param[in] M
|
||
|
C> \verbatim
|
||
|
C> M is INTEGER
|
||
|
C> The number of rows of the matrix A. M >= 0.
|
||
|
C> \endverbatim
|
||
|
C>
|
||
|
C> \param[in] N
|
||
|
C> \verbatim
|
||
|
C> N is INTEGER
|
||
|
C> The number of columns of the matrix A. N >= 0.
|
||
|
C> \endverbatim
|
||
|
C>
|
||
|
C> \param[in,out] A
|
||
|
C> \verbatim
|
||
|
C> A is REAL array, dimension (LDA,N)
|
||
|
C> On entry, the M-by-N matrix to be factored.
|
||
|
C> On exit, the factors L and U from the factorization
|
||
|
C> A = P*L*U; the unit diagonal elements of L are not stored.
|
||
|
C> \endverbatim
|
||
|
C>
|
||
|
C> \param[in] LDA
|
||
|
C> \verbatim
|
||
|
C> LDA is INTEGER
|
||
|
C> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
C> \endverbatim
|
||
|
C>
|
||
|
C> \param[out] IPIV
|
||
|
C> \verbatim
|
||
|
C> IPIV is INTEGER array, dimension (min(M,N))
|
||
|
C> The pivot indices; for 1 <= i <= min(M,N), row i of the
|
||
|
C> matrix was interchanged with row IPIV(i).
|
||
|
C> \endverbatim
|
||
|
C>
|
||
|
C> \param[out] INFO
|
||
|
C> \verbatim
|
||
|
C> INFO is INTEGER
|
||
|
C> = 0: successful exit
|
||
|
C> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
C> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
|
||
|
C> has been completed, but the factor U is exactly
|
||
|
C> singular, and division by zero will occur if it is used
|
||
|
C> to solve a system of equations.
|
||
|
C> \endverbatim
|
||
|
C>
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
C> \author Univ. of Tennessee
|
||
|
C> \author Univ. of California Berkeley
|
||
|
C> \author Univ. of Colorado Denver
|
||
|
C> \author NAG Ltd.
|
||
|
*
|
||
|
C> \date December 2016
|
||
|
*
|
||
|
C> \ingroup variantsGEcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine (version 3.X) --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
REAL A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO, NEGONE
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
PARAMETER ( NEGONE = -1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
REAL SFMIN, TMP
|
||
|
INTEGER I, J, JP, NSTEP, NTOPIV, NPIVED, KAHEAD
|
||
|
INTEGER KSTART, IPIVSTART, JPIVSTART, KCOLS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH
|
||
|
INTEGER ISAMAX
|
||
|
LOGICAL SISNAN
|
||
|
EXTERNAL SLAMCH, ISAMAX, SISNAN
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL STRSM, SSCAL, XERBLA, SLASWP
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN, IAND
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGETRF', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Compute machine safe minimum
|
||
|
*
|
||
|
SFMIN = SLAMCH( 'S' )
|
||
|
*
|
||
|
NSTEP = MIN( M, N )
|
||
|
DO J = 1, NSTEP
|
||
|
KAHEAD = IAND( J, -J )
|
||
|
KSTART = J + 1 - KAHEAD
|
||
|
KCOLS = MIN( KAHEAD, M-J )
|
||
|
*
|
||
|
* Find pivot.
|
||
|
*
|
||
|
JP = J - 1 + ISAMAX( M-J+1, A( J, J ), 1 )
|
||
|
IPIV( J ) = JP
|
||
|
|
||
|
! Permute just this column.
|
||
|
IF (JP .NE. J) THEN
|
||
|
TMP = A( J, J )
|
||
|
A( J, J ) = A( JP, J )
|
||
|
A( JP, J ) = TMP
|
||
|
END IF
|
||
|
|
||
|
! Apply pending permutations to L
|
||
|
NTOPIV = 1
|
||
|
IPIVSTART = J
|
||
|
JPIVSTART = J - NTOPIV
|
||
|
DO WHILE ( NTOPIV .LT. KAHEAD )
|
||
|
CALL SLASWP( NTOPIV, A( 1, JPIVSTART ), LDA, IPIVSTART, J,
|
||
|
$ IPIV, 1 )
|
||
|
IPIVSTART = IPIVSTART - NTOPIV;
|
||
|
NTOPIV = NTOPIV * 2;
|
||
|
JPIVSTART = JPIVSTART - NTOPIV;
|
||
|
END DO
|
||
|
|
||
|
! Permute U block to match L
|
||
|
CALL SLASWP( KCOLS, A( 1,J+1 ), LDA, KSTART, J, IPIV, 1 )
|
||
|
|
||
|
! Factor the current column
|
||
|
IF( A( J, J ).NE.ZERO .AND. .NOT.SISNAN( A( J, J ) ) ) THEN
|
||
|
IF( ABS(A( J, J )) .GE. SFMIN ) THEN
|
||
|
CALL SSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
|
||
|
ELSE
|
||
|
DO I = 1, M-J
|
||
|
A( J+I, J ) = A( J+I, J ) / A( J, J )
|
||
|
END DO
|
||
|
END IF
|
||
|
ELSE IF( A( J,J ) .EQ. ZERO .AND. INFO .EQ. 0 ) THEN
|
||
|
INFO = J
|
||
|
END IF
|
||
|
|
||
|
! Solve for U block.
|
||
|
CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', KAHEAD,
|
||
|
$ KCOLS, ONE, A( KSTART, KSTART ), LDA,
|
||
|
$ A( KSTART, J+1 ), LDA )
|
||
|
! Schur complement.
|
||
|
CALL SGEMM( 'No transpose', 'No transpose', M-J,
|
||
|
$ KCOLS, KAHEAD, NEGONE, A( J+1, KSTART ), LDA,
|
||
|
$ A( KSTART, J+1 ), LDA, ONE, A( J+1, J+1 ), LDA )
|
||
|
END DO
|
||
|
|
||
|
! Handle pivot permutations on the way out of the recursion
|
||
|
NPIVED = IAND( NSTEP, -NSTEP )
|
||
|
J = NSTEP - NPIVED
|
||
|
DO WHILE ( J .GT. 0 )
|
||
|
NTOPIV = IAND( J, -J )
|
||
|
CALL SLASWP( NTOPIV, A( 1, J-NTOPIV+1 ), LDA, J+1, NSTEP,
|
||
|
$ IPIV, 1 )
|
||
|
J = J - NTOPIV
|
||
|
END DO
|
||
|
|
||
|
! If short and wide, handle the rest of the columns.
|
||
|
IF ( M .LT. N ) THEN
|
||
|
CALL SLASWP( N-M, A( 1, M+KCOLS+1 ), LDA, 1, M, IPIV, 1 )
|
||
|
CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', M,
|
||
|
$ N-M, ONE, A, LDA, A( 1,M+KCOLS+1 ), LDA )
|
||
|
END IF
|
||
|
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGETRF
|
||
|
*
|
||
|
END
|