You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1440 lines
55 KiB
1440 lines
55 KiB
2 years ago
|
*> \brief <b> CGESVJ </b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CGESVJ + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvj.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvj.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvj.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
|
||
|
* LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
|
||
|
* CHARACTER*1 JOBA, JOBU, JOBV
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX A( LDA, * ), V( LDV, * ), CWORK( LWORK )
|
||
|
* REAL RWORK( LRWORK ), SVA( N )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CGESVJ computes the singular value decomposition (SVD) of a complex
|
||
|
*> M-by-N matrix A, where M >= N. The SVD of A is written as
|
||
|
*> [++] [xx] [x0] [xx]
|
||
|
*> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx]
|
||
|
*> [++] [xx]
|
||
|
*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
|
||
|
*> matrix, and V is an N-by-N unitary matrix. The diagonal elements
|
||
|
*> of SIGMA are the singular values of A. The columns of U and V are the
|
||
|
*> left and the right singular vectors of A, respectively.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBA
|
||
|
*> \verbatim
|
||
|
*> JOBA is CHARACTER*1
|
||
|
*> Specifies the structure of A.
|
||
|
*> = 'L': The input matrix A is lower triangular;
|
||
|
*> = 'U': The input matrix A is upper triangular;
|
||
|
*> = 'G': The input matrix A is general M-by-N matrix, M >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBU
|
||
|
*> \verbatim
|
||
|
*> JOBU is CHARACTER*1
|
||
|
*> Specifies whether to compute the left singular vectors
|
||
|
*> (columns of U):
|
||
|
*> = 'U' or 'F': The left singular vectors corresponding to the nonzero
|
||
|
*> singular values are computed and returned in the leading
|
||
|
*> columns of A. See more details in the description of A.
|
||
|
*> The default numerical orthogonality threshold is set to
|
||
|
*> approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=SLAMCH('E').
|
||
|
*> = 'C': Analogous to JOBU='U', except that user can control the
|
||
|
*> level of numerical orthogonality of the computed left
|
||
|
*> singular vectors. TOL can be set to TOL = CTOL*EPS, where
|
||
|
*> CTOL is given on input in the array WORK.
|
||
|
*> No CTOL smaller than ONE is allowed. CTOL greater
|
||
|
*> than 1 / EPS is meaningless. The option 'C'
|
||
|
*> can be used if M*EPS is satisfactory orthogonality
|
||
|
*> of the computed left singular vectors, so CTOL=M could
|
||
|
*> save few sweeps of Jacobi rotations.
|
||
|
*> See the descriptions of A and WORK(1).
|
||
|
*> = 'N': The matrix U is not computed. However, see the
|
||
|
*> description of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBV
|
||
|
*> \verbatim
|
||
|
*> JOBV is CHARACTER*1
|
||
|
*> Specifies whether to compute the right singular vectors, that
|
||
|
*> is, the matrix V:
|
||
|
*> = 'V' or 'J': the matrix V is computed and returned in the array V
|
||
|
*> = 'A': the Jacobi rotations are applied to the MV-by-N
|
||
|
*> array V. In other words, the right singular vector
|
||
|
*> matrix V is not computed explicitly; instead it is
|
||
|
*> applied to an MV-by-N matrix initially stored in the
|
||
|
*> first MV rows of V.
|
||
|
*> = 'N': the matrix V is not computed and the array V is not
|
||
|
*> referenced
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the input matrix A. 1/SLAMCH('E') > M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the input matrix A.
|
||
|
*> M >= N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit,
|
||
|
*> If JOBU = 'U' .OR. JOBU = 'C':
|
||
|
*> If INFO = 0 :
|
||
|
*> RANKA orthonormal columns of U are returned in the
|
||
|
*> leading RANKA columns of the array A. Here RANKA <= N
|
||
|
*> is the number of computed singular values of A that are
|
||
|
*> above the underflow threshold SLAMCH('S'). The singular
|
||
|
*> vectors corresponding to underflowed or zero singular
|
||
|
*> values are not computed. The value of RANKA is returned
|
||
|
*> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
|
||
|
*> descriptions of SVA and RWORK. The computed columns of U
|
||
|
*> are mutually numerically orthogonal up to approximately
|
||
|
*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'),
|
||
|
*> see the description of JOBU.
|
||
|
*> If INFO > 0,
|
||
|
*> the procedure CGESVJ did not converge in the given number
|
||
|
*> of iterations (sweeps). In that case, the computed
|
||
|
*> columns of U may not be orthogonal up to TOL. The output
|
||
|
*> U (stored in A), SIGMA (given by the computed singular
|
||
|
*> values in SVA(1:N)) and V is still a decomposition of the
|
||
|
*> input matrix A in the sense that the residual
|
||
|
*> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
|
||
|
*> If JOBU = 'N':
|
||
|
*> If INFO = 0 :
|
||
|
*> Note that the left singular vectors are 'for free' in the
|
||
|
*> one-sided Jacobi SVD algorithm. However, if only the
|
||
|
*> singular values are needed, the level of numerical
|
||
|
*> orthogonality of U is not an issue and iterations are
|
||
|
*> stopped when the columns of the iterated matrix are
|
||
|
*> numerically orthogonal up to approximately M*EPS. Thus,
|
||
|
*> on exit, A contains the columns of U scaled with the
|
||
|
*> corresponding singular values.
|
||
|
*> If INFO > 0 :
|
||
|
*> the procedure CGESVJ did not converge in the given number
|
||
|
*> of iterations (sweeps).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SVA
|
||
|
*> \verbatim
|
||
|
*> SVA is REAL array, dimension (N)
|
||
|
*> On exit,
|
||
|
*> If INFO = 0 :
|
||
|
*> depending on the value SCALE = RWORK(1), we have:
|
||
|
*> If SCALE = ONE:
|
||
|
*> SVA(1:N) contains the computed singular values of A.
|
||
|
*> During the computation SVA contains the Euclidean column
|
||
|
*> norms of the iterated matrices in the array A.
|
||
|
*> If SCALE .NE. ONE:
|
||
|
*> The singular values of A are SCALE*SVA(1:N), and this
|
||
|
*> factored representation is due to the fact that some of the
|
||
|
*> singular values of A might underflow or overflow.
|
||
|
*>
|
||
|
*> If INFO > 0 :
|
||
|
*> the procedure CGESVJ did not converge in the given number of
|
||
|
*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] MV
|
||
|
*> \verbatim
|
||
|
*> MV is INTEGER
|
||
|
*> If JOBV = 'A', then the product of Jacobi rotations in CGESVJ
|
||
|
*> is applied to the first MV rows of V. See the description of JOBV.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] V
|
||
|
*> \verbatim
|
||
|
*> V is COMPLEX array, dimension (LDV,N)
|
||
|
*> If JOBV = 'V', then V contains on exit the N-by-N matrix of
|
||
|
*> the right singular vectors;
|
||
|
*> If JOBV = 'A', then V contains the product of the computed right
|
||
|
*> singular vector matrix and the initial matrix in
|
||
|
*> the array V.
|
||
|
*> If JOBV = 'N', then V is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV
|
||
|
*> \verbatim
|
||
|
*> LDV is INTEGER
|
||
|
*> The leading dimension of the array V, LDV >= 1.
|
||
|
*> If JOBV = 'V', then LDV >= max(1,N).
|
||
|
*> If JOBV = 'A', then LDV >= max(1,MV) .
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] CWORK
|
||
|
*> \verbatim
|
||
|
*> CWORK is COMPLEX array, dimension (max(1,LWORK))
|
||
|
*> Used as workspace.
|
||
|
*> If on entry LWORK = -1, then a workspace query is assumed and
|
||
|
*> no computation is done; CWORK(1) is set to the minial (and optimal)
|
||
|
*> length of CWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER.
|
||
|
*> Length of CWORK, LWORK >= M+N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (max(6,LRWORK))
|
||
|
*> On entry,
|
||
|
*> If JOBU = 'C' :
|
||
|
*> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
|
||
|
*> The process stops if all columns of A are mutually
|
||
|
*> orthogonal up to CTOL*EPS, EPS=SLAMCH('E').
|
||
|
*> It is required that CTOL >= ONE, i.e. it is not
|
||
|
*> allowed to force the routine to obtain orthogonality
|
||
|
*> below EPSILON.
|
||
|
*> On exit,
|
||
|
*> RWORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
|
||
|
*> are the computed singular values of A.
|
||
|
*> (See description of SVA().)
|
||
|
*> RWORK(2) = NINT(RWORK(2)) is the number of the computed nonzero
|
||
|
*> singular values.
|
||
|
*> RWORK(3) = NINT(RWORK(3)) is the number of the computed singular
|
||
|
*> values that are larger than the underflow threshold.
|
||
|
*> RWORK(4) = NINT(RWORK(4)) is the number of sweeps of Jacobi
|
||
|
*> rotations needed for numerical convergence.
|
||
|
*> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
|
||
|
*> This is useful information in cases when CGESVJ did
|
||
|
*> not converge, as it can be used to estimate whether
|
||
|
*> the output is still useful and for post festum analysis.
|
||
|
*> RWORK(6) = the largest absolute value over all sines of the
|
||
|
*> Jacobi rotation angles in the last sweep. It can be
|
||
|
*> useful for a post festum analysis.
|
||
|
*> If on entry LRWORK = -1, then a workspace query is assumed and
|
||
|
*> no computation is done; RWORK(1) is set to the minial (and optimal)
|
||
|
*> length of RWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LRWORK
|
||
|
*> \verbatim
|
||
|
*> LRWORK is INTEGER
|
||
|
*> Length of RWORK, LRWORK >= MAX(6,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, then the i-th argument had an illegal value
|
||
|
*> > 0: CGESVJ did not converge in the maximal allowed number
|
||
|
*> (NSWEEP=30) of sweeps. The output may still be useful.
|
||
|
*> See the description of RWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexGEcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
|
||
|
*> rotations. In the case of underflow of the tangent of the Jacobi angle, a
|
||
|
*> modified Jacobi transformation of Drmac [3] is used. Pivot strategy uses
|
||
|
*> column interchanges of de Rijk [1]. The relative accuracy of the computed
|
||
|
*> singular values and the accuracy of the computed singular vectors (in
|
||
|
*> angle metric) is as guaranteed by the theory of Demmel and Veselic [2].
|
||
|
*> The condition number that determines the accuracy in the full rank case
|
||
|
*> is essentially min_{D=diag} kappa(A*D), where kappa(.) is the
|
||
|
*> spectral condition number. The best performance of this Jacobi SVD
|
||
|
*> procedure is achieved if used in an accelerated version of Drmac and
|
||
|
*> Veselic [4,5], and it is the kernel routine in the SIGMA library [6].
|
||
|
*> Some tuning parameters (marked with [TP]) are available for the
|
||
|
*> implementer.
|
||
|
*> The computational range for the nonzero singular values is the machine
|
||
|
*> number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even
|
||
|
*> denormalized singular values can be computed with the corresponding
|
||
|
*> gradual loss of accurate digits.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Contributor:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ============
|
||
|
*>
|
||
|
*> Zlatko Drmac (Zagreb, Croatia)
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par References:
|
||
|
* ================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> [1] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the
|
||
|
*> singular value decomposition on a vector computer.
|
||
|
*> SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
|
||
|
*> [2] J. Demmel and K. Veselic: Jacobi method is more accurate than QR.
|
||
|
*> [3] Z. Drmac: Implementation of Jacobi rotations for accurate singular
|
||
|
*> value computation in floating point arithmetic.
|
||
|
*> SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
|
||
|
*> [4] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
|
||
|
*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
|
||
|
*> LAPACK Working note 169.
|
||
|
*> [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
|
||
|
*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
|
||
|
*> LAPACK Working note 170.
|
||
|
*> [6] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
|
||
|
*> QSVD, (H,K)-SVD computations.
|
||
|
*> Department of Mathematics, University of Zagreb, 2008, 2015.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Bugs, examples and comments:
|
||
|
* =================================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*> ===========================
|
||
|
*> Please report all bugs and send interesting test examples and comments to
|
||
|
*> drmac@math.hr. Thank you.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
|
||
|
$ LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
IMPLICIT NONE
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
|
||
|
CHARACTER*1 JOBA, JOBU, JOBV
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX A( LDA, * ), V( LDV, * ), CWORK( LWORK )
|
||
|
REAL RWORK( LRWORK ), SVA( N )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Parameters ..
|
||
|
REAL ZERO, HALF, ONE
|
||
|
PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
|
||
|
COMPLEX CZERO, CONE
|
||
|
PARAMETER ( CZERO = (0.0E0, 0.0E0), CONE = (1.0E0, 0.0E0) )
|
||
|
INTEGER NSWEEP
|
||
|
PARAMETER ( NSWEEP = 30 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
COMPLEX AAPQ, OMPQ
|
||
|
REAL AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
|
||
|
$ BIGTHETA, CS, CTOL, EPSLN, MXAAPQ,
|
||
|
$ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL,
|
||
|
$ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, TOL
|
||
|
INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
|
||
|
$ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34,
|
||
|
$ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
|
||
|
LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, ROTOK,
|
||
|
$ RSVEC, UCTOL, UPPER
|
||
|
* ..
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN, CONJG, REAL, SIGN, SQRT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
* ..
|
||
|
* from BLAS
|
||
|
REAL SCNRM2
|
||
|
COMPLEX CDOTC
|
||
|
EXTERNAL CDOTC, SCNRM2
|
||
|
INTEGER ISAMAX
|
||
|
EXTERNAL ISAMAX
|
||
|
* from LAPACK
|
||
|
REAL SLAMCH
|
||
|
EXTERNAL SLAMCH
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
* ..
|
||
|
* from BLAS
|
||
|
EXTERNAL CCOPY, CROT, CSSCAL, CSWAP, CAXPY
|
||
|
* from LAPACK
|
||
|
EXTERNAL CLASCL, CLASET, CLASSQ, SLASCL, XERBLA
|
||
|
EXTERNAL CGSVJ0, CGSVJ1
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
|
||
|
UCTOL = LSAME( JOBU, 'C' )
|
||
|
RSVEC = LSAME( JOBV, 'V' ) .OR. LSAME( JOBV, 'J' )
|
||
|
APPLV = LSAME( JOBV, 'A' )
|
||
|
UPPER = LSAME( JOBA, 'U' )
|
||
|
LOWER = LSAME( JOBA, 'L' )
|
||
|
*
|
||
|
LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
|
||
|
IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( M.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDA.LT.M ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( MV.LT.0 ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( ( RSVEC .AND. ( LDV.LT.N ) ) .OR.
|
||
|
$ ( APPLV .AND. ( LDV.LT.MV ) ) ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF( UCTOL .AND. ( RWORK( 1 ).LE.ONE ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( LWORK.LT.( M+N ) .AND. ( .NOT.LQUERY ) ) THEN
|
||
|
INFO = -13
|
||
|
ELSE IF( LRWORK.LT.MAX( N, 6 ) .AND. ( .NOT.LQUERY ) ) THEN
|
||
|
INFO = -15
|
||
|
ELSE
|
||
|
INFO = 0
|
||
|
END IF
|
||
|
*
|
||
|
* #:(
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CGESVJ', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF ( LQUERY ) THEN
|
||
|
CWORK(1) = M + N
|
||
|
RWORK(1) = MAX( N, 6 )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* #:) Quick return for void matrix
|
||
|
*
|
||
|
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN
|
||
|
*
|
||
|
* Set numerical parameters
|
||
|
* The stopping criterion for Jacobi rotations is
|
||
|
*
|
||
|
* max_{i<>j}|A(:,i)^* * A(:,j)| / (||A(:,i)||*||A(:,j)||) < CTOL*EPS
|
||
|
*
|
||
|
* where EPS is the round-off and CTOL is defined as follows:
|
||
|
*
|
||
|
IF( UCTOL ) THEN
|
||
|
* ... user controlled
|
||
|
CTOL = RWORK( 1 )
|
||
|
ELSE
|
||
|
* ... default
|
||
|
IF( LSVEC .OR. RSVEC .OR. APPLV ) THEN
|
||
|
CTOL = SQRT( REAL( M ) )
|
||
|
ELSE
|
||
|
CTOL = REAL( M )
|
||
|
END IF
|
||
|
END IF
|
||
|
* ... and the machine dependent parameters are
|
||
|
*[!] (Make sure that SLAMCH() works properly on the target machine.)
|
||
|
*
|
||
|
EPSLN = SLAMCH( 'Epsilon' )
|
||
|
ROOTEPS = SQRT( EPSLN )
|
||
|
SFMIN = SLAMCH( 'SafeMinimum' )
|
||
|
ROOTSFMIN = SQRT( SFMIN )
|
||
|
SMALL = SFMIN / EPSLN
|
||
|
* BIG = SLAMCH( 'Overflow' )
|
||
|
BIG = ONE / SFMIN
|
||
|
ROOTBIG = ONE / ROOTSFMIN
|
||
|
* LARGE = BIG / SQRT( REAL( M*N ) )
|
||
|
BIGTHETA = ONE / ROOTEPS
|
||
|
*
|
||
|
TOL = CTOL*EPSLN
|
||
|
ROOTTOL = SQRT( TOL )
|
||
|
*
|
||
|
IF( REAL( M )*EPSLN.GE.ONE ) THEN
|
||
|
INFO = -4
|
||
|
CALL XERBLA( 'CGESVJ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize the right singular vector matrix.
|
||
|
*
|
||
|
IF( RSVEC ) THEN
|
||
|
MVL = N
|
||
|
CALL CLASET( 'A', MVL, N, CZERO, CONE, V, LDV )
|
||
|
ELSE IF( APPLV ) THEN
|
||
|
MVL = MV
|
||
|
END IF
|
||
|
RSVEC = RSVEC .OR. APPLV
|
||
|
*
|
||
|
* Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N )
|
||
|
*(!) If necessary, scale A to protect the largest singular value
|
||
|
* from overflow. It is possible that saving the largest singular
|
||
|
* value destroys the information about the small ones.
|
||
|
* This initial scaling is almost minimal in the sense that the
|
||
|
* goal is to make sure that no column norm overflows, and that
|
||
|
* SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries
|
||
|
* in A are detected, the procedure returns with INFO=-6.
|
||
|
*
|
||
|
SKL = ONE / SQRT( REAL( M )*REAL( N ) )
|
||
|
NOSCALE = .TRUE.
|
||
|
GOSCALE = .TRUE.
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
* the input matrix is M-by-N lower triangular (trapezoidal)
|
||
|
DO 1874 p = 1, N
|
||
|
AAPP = ZERO
|
||
|
AAQQ = ONE
|
||
|
CALL CLASSQ( M-p+1, A( p, p ), 1, AAPP, AAQQ )
|
||
|
IF( AAPP.GT.BIG ) THEN
|
||
|
INFO = -6
|
||
|
CALL XERBLA( 'CGESVJ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
AAQQ = SQRT( AAQQ )
|
||
|
IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
|
||
|
SVA( p ) = AAPP*AAQQ
|
||
|
ELSE
|
||
|
NOSCALE = .FALSE.
|
||
|
SVA( p ) = AAPP*( AAQQ*SKL )
|
||
|
IF( GOSCALE ) THEN
|
||
|
GOSCALE = .FALSE.
|
||
|
DO 1873 q = 1, p - 1
|
||
|
SVA( q ) = SVA( q )*SKL
|
||
|
1873 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
1874 CONTINUE
|
||
|
ELSE IF( UPPER ) THEN
|
||
|
* the input matrix is M-by-N upper triangular (trapezoidal)
|
||
|
DO 2874 p = 1, N
|
||
|
AAPP = ZERO
|
||
|
AAQQ = ONE
|
||
|
CALL CLASSQ( p, A( 1, p ), 1, AAPP, AAQQ )
|
||
|
IF( AAPP.GT.BIG ) THEN
|
||
|
INFO = -6
|
||
|
CALL XERBLA( 'CGESVJ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
AAQQ = SQRT( AAQQ )
|
||
|
IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
|
||
|
SVA( p ) = AAPP*AAQQ
|
||
|
ELSE
|
||
|
NOSCALE = .FALSE.
|
||
|
SVA( p ) = AAPP*( AAQQ*SKL )
|
||
|
IF( GOSCALE ) THEN
|
||
|
GOSCALE = .FALSE.
|
||
|
DO 2873 q = 1, p - 1
|
||
|
SVA( q ) = SVA( q )*SKL
|
||
|
2873 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
2874 CONTINUE
|
||
|
ELSE
|
||
|
* the input matrix is M-by-N general dense
|
||
|
DO 3874 p = 1, N
|
||
|
AAPP = ZERO
|
||
|
AAQQ = ONE
|
||
|
CALL CLASSQ( M, A( 1, p ), 1, AAPP, AAQQ )
|
||
|
IF( AAPP.GT.BIG ) THEN
|
||
|
INFO = -6
|
||
|
CALL XERBLA( 'CGESVJ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
AAQQ = SQRT( AAQQ )
|
||
|
IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
|
||
|
SVA( p ) = AAPP*AAQQ
|
||
|
ELSE
|
||
|
NOSCALE = .FALSE.
|
||
|
SVA( p ) = AAPP*( AAQQ*SKL )
|
||
|
IF( GOSCALE ) THEN
|
||
|
GOSCALE = .FALSE.
|
||
|
DO 3873 q = 1, p - 1
|
||
|
SVA( q ) = SVA( q )*SKL
|
||
|
3873 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
3874 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOSCALE )SKL = ONE
|
||
|
*
|
||
|
* Move the smaller part of the spectrum from the underflow threshold
|
||
|
*(!) Start by determining the position of the nonzero entries of the
|
||
|
* array SVA() relative to ( SFMIN, BIG ).
|
||
|
*
|
||
|
AAPP = ZERO
|
||
|
AAQQ = BIG
|
||
|
DO 4781 p = 1, N
|
||
|
IF( SVA( p ).NE.ZERO )AAQQ = MIN( AAQQ, SVA( p ) )
|
||
|
AAPP = MAX( AAPP, SVA( p ) )
|
||
|
4781 CONTINUE
|
||
|
*
|
||
|
* #:) Quick return for zero matrix
|
||
|
*
|
||
|
IF( AAPP.EQ.ZERO ) THEN
|
||
|
IF( LSVEC )CALL CLASET( 'G', M, N, CZERO, CONE, A, LDA )
|
||
|
RWORK( 1 ) = ONE
|
||
|
RWORK( 2 ) = ZERO
|
||
|
RWORK( 3 ) = ZERO
|
||
|
RWORK( 4 ) = ZERO
|
||
|
RWORK( 5 ) = ZERO
|
||
|
RWORK( 6 ) = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* #:) Quick return for one-column matrix
|
||
|
*
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
IF( LSVEC )CALL CLASCL( 'G', 0, 0, SVA( 1 ), SKL, M, 1,
|
||
|
$ A( 1, 1 ), LDA, IERR )
|
||
|
RWORK( 1 ) = ONE / SKL
|
||
|
IF( SVA( 1 ).GE.SFMIN ) THEN
|
||
|
RWORK( 2 ) = ONE
|
||
|
ELSE
|
||
|
RWORK( 2 ) = ZERO
|
||
|
END IF
|
||
|
RWORK( 3 ) = ZERO
|
||
|
RWORK( 4 ) = ZERO
|
||
|
RWORK( 5 ) = ZERO
|
||
|
RWORK( 6 ) = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Protect small singular values from underflow, and try to
|
||
|
* avoid underflows/overflows in computing Jacobi rotations.
|
||
|
*
|
||
|
SN = SQRT( SFMIN / EPSLN )
|
||
|
TEMP1 = SQRT( BIG / REAL( N ) )
|
||
|
IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR.
|
||
|
$ ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN
|
||
|
TEMP1 = MIN( BIG, TEMP1 / AAPP )
|
||
|
* AAQQ = AAQQ*TEMP1
|
||
|
* AAPP = AAPP*TEMP1
|
||
|
ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN
|
||
|
TEMP1 = MIN( SN / AAQQ, BIG / ( AAPP*SQRT( REAL( N ) ) ) )
|
||
|
* AAQQ = AAQQ*TEMP1
|
||
|
* AAPP = AAPP*TEMP1
|
||
|
ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
|
||
|
TEMP1 = MAX( SN / AAQQ, TEMP1 / AAPP )
|
||
|
* AAQQ = AAQQ*TEMP1
|
||
|
* AAPP = AAPP*TEMP1
|
||
|
ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
|
||
|
TEMP1 = MIN( SN / AAQQ, BIG / ( SQRT( REAL( N ) )*AAPP ) )
|
||
|
* AAQQ = AAQQ*TEMP1
|
||
|
* AAPP = AAPP*TEMP1
|
||
|
ELSE
|
||
|
TEMP1 = ONE
|
||
|
END IF
|
||
|
*
|
||
|
* Scale, if necessary
|
||
|
*
|
||
|
IF( TEMP1.NE.ONE ) THEN
|
||
|
CALL SLASCL( 'G', 0, 0, ONE, TEMP1, N, 1, SVA, N, IERR )
|
||
|
END IF
|
||
|
SKL = TEMP1*SKL
|
||
|
IF( SKL.NE.ONE ) THEN
|
||
|
CALL CLASCL( JOBA, 0, 0, ONE, SKL, M, N, A, LDA, IERR )
|
||
|
SKL = ONE / SKL
|
||
|
END IF
|
||
|
*
|
||
|
* Row-cyclic Jacobi SVD algorithm with column pivoting
|
||
|
*
|
||
|
EMPTSW = ( N*( N-1 ) ) / 2
|
||
|
NOTROT = 0
|
||
|
|
||
|
DO 1868 q = 1, N
|
||
|
CWORK( q ) = CONE
|
||
|
1868 CONTINUE
|
||
|
*
|
||
|
*
|
||
|
*
|
||
|
SWBAND = 3
|
||
|
*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
|
||
|
* if CGESVJ is used as a computational routine in the preconditioned
|
||
|
* Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure
|
||
|
* works on pivots inside a band-like region around the diagonal.
|
||
|
* The boundaries are determined dynamically, based on the number of
|
||
|
* pivots above a threshold.
|
||
|
*
|
||
|
KBL = MIN( 8, N )
|
||
|
*[TP] KBL is a tuning parameter that defines the tile size in the
|
||
|
* tiling of the p-q loops of pivot pairs. In general, an optimal
|
||
|
* value of KBL depends on the matrix dimensions and on the
|
||
|
* parameters of the computer's memory.
|
||
|
*
|
||
|
NBL = N / KBL
|
||
|
IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
|
||
|
*
|
||
|
BLSKIP = KBL**2
|
||
|
*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
|
||
|
*
|
||
|
ROWSKIP = MIN( 5, KBL )
|
||
|
*[TP] ROWSKIP is a tuning parameter.
|
||
|
*
|
||
|
LKAHEAD = 1
|
||
|
*[TP] LKAHEAD is a tuning parameter.
|
||
|
*
|
||
|
* Quasi block transformations, using the lower (upper) triangular
|
||
|
* structure of the input matrix. The quasi-block-cycling usually
|
||
|
* invokes cubic convergence. Big part of this cycle is done inside
|
||
|
* canonical subspaces of dimensions less than M.
|
||
|
*
|
||
|
IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX( 64, 4*KBL ) ) ) THEN
|
||
|
*[TP] The number of partition levels and the actual partition are
|
||
|
* tuning parameters.
|
||
|
N4 = N / 4
|
||
|
N2 = N / 2
|
||
|
N34 = 3*N4
|
||
|
IF( APPLV ) THEN
|
||
|
q = 0
|
||
|
ELSE
|
||
|
q = 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* This works very well on lower triangular matrices, in particular
|
||
|
* in the framework of the preconditioned Jacobi SVD (xGEJSV).
|
||
|
* The idea is simple:
|
||
|
* [+ 0 0 0] Note that Jacobi transformations of [0 0]
|
||
|
* [+ + 0 0] [0 0]
|
||
|
* [+ + x 0] actually work on [x 0] [x 0]
|
||
|
* [+ + x x] [x x]. [x x]
|
||
|
*
|
||
|
CALL CGSVJ0( JOBV, M-N34, N-N34, A( N34+1, N34+1 ), LDA,
|
||
|
$ CWORK( N34+1 ), SVA( N34+1 ), MVL,
|
||
|
$ V( N34*q+1, N34+1 ), LDV, EPSLN, SFMIN, TOL,
|
||
|
$ 2, CWORK( N+1 ), LWORK-N, IERR )
|
||
|
|
||
|
CALL CGSVJ0( JOBV, M-N2, N34-N2, A( N2+1, N2+1 ), LDA,
|
||
|
$ CWORK( N2+1 ), SVA( N2+1 ), MVL,
|
||
|
$ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 2,
|
||
|
$ CWORK( N+1 ), LWORK-N, IERR )
|
||
|
|
||
|
CALL CGSVJ1( JOBV, M-N2, N-N2, N4, A( N2+1, N2+1 ), LDA,
|
||
|
$ CWORK( N2+1 ), SVA( N2+1 ), MVL,
|
||
|
$ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
|
||
|
$ CWORK( N+1 ), LWORK-N, IERR )
|
||
|
*
|
||
|
CALL CGSVJ0( JOBV, M-N4, N2-N4, A( N4+1, N4+1 ), LDA,
|
||
|
$ CWORK( N4+1 ), SVA( N4+1 ), MVL,
|
||
|
$ V( N4*q+1, N4+1 ), LDV, EPSLN, SFMIN, TOL, 1,
|
||
|
$ CWORK( N+1 ), LWORK-N, IERR )
|
||
|
*
|
||
|
CALL CGSVJ0( JOBV, M, N4, A, LDA, CWORK, SVA, MVL, V, LDV,
|
||
|
$ EPSLN, SFMIN, TOL, 1, CWORK( N+1 ), LWORK-N,
|
||
|
$ IERR )
|
||
|
*
|
||
|
CALL CGSVJ1( JOBV, M, N2, N4, A, LDA, CWORK, SVA, MVL, V,
|
||
|
$ LDV, EPSLN, SFMIN, TOL, 1, CWORK( N+1 ),
|
||
|
$ LWORK-N, IERR )
|
||
|
*
|
||
|
*
|
||
|
ELSE IF( UPPER ) THEN
|
||
|
*
|
||
|
*
|
||
|
CALL CGSVJ0( JOBV, N4, N4, A, LDA, CWORK, SVA, MVL, V, LDV,
|
||
|
$ EPSLN, SFMIN, TOL, 2, CWORK( N+1 ), LWORK-N,
|
||
|
$ IERR )
|
||
|
*
|
||
|
CALL CGSVJ0( JOBV, N2, N4, A( 1, N4+1 ), LDA, CWORK( N4+1 ),
|
||
|
$ SVA( N4+1 ), MVL, V( N4*q+1, N4+1 ), LDV,
|
||
|
$ EPSLN, SFMIN, TOL, 1, CWORK( N+1 ), LWORK-N,
|
||
|
$ IERR )
|
||
|
*
|
||
|
CALL CGSVJ1( JOBV, N2, N2, N4, A, LDA, CWORK, SVA, MVL, V,
|
||
|
$ LDV, EPSLN, SFMIN, TOL, 1, CWORK( N+1 ),
|
||
|
$ LWORK-N, IERR )
|
||
|
*
|
||
|
CALL CGSVJ0( JOBV, N2+N4, N4, A( 1, N2+1 ), LDA,
|
||
|
$ CWORK( N2+1 ), SVA( N2+1 ), MVL,
|
||
|
$ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
|
||
|
$ CWORK( N+1 ), LWORK-N, IERR )
|
||
|
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
|
||
|
*
|
||
|
DO 1993 i = 1, NSWEEP
|
||
|
*
|
||
|
* .. go go go ...
|
||
|
*
|
||
|
MXAAPQ = ZERO
|
||
|
MXSINJ = ZERO
|
||
|
ISWROT = 0
|
||
|
*
|
||
|
NOTROT = 0
|
||
|
PSKIPPED = 0
|
||
|
*
|
||
|
* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
|
||
|
* 1 <= p < q <= N. This is the first step toward a blocked implementation
|
||
|
* of the rotations. New implementation, based on block transformations,
|
||
|
* is under development.
|
||
|
*
|
||
|
DO 2000 ibr = 1, NBL
|
||
|
*
|
||
|
igl = ( ibr-1 )*KBL + 1
|
||
|
*
|
||
|
DO 1002 ir1 = 0, MIN( LKAHEAD, NBL-ibr )
|
||
|
*
|
||
|
igl = igl + ir1*KBL
|
||
|
*
|
||
|
DO 2001 p = igl, MIN( igl+KBL-1, N-1 )
|
||
|
*
|
||
|
* .. de Rijk's pivoting
|
||
|
*
|
||
|
q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
|
||
|
IF( p.NE.q ) THEN
|
||
|
CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
|
||
|
IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1,
|
||
|
$ V( 1, q ), 1 )
|
||
|
TEMP1 = SVA( p )
|
||
|
SVA( p ) = SVA( q )
|
||
|
SVA( q ) = TEMP1
|
||
|
AAPQ = CWORK(p)
|
||
|
CWORK(p) = CWORK(q)
|
||
|
CWORK(q) = AAPQ
|
||
|
END IF
|
||
|
*
|
||
|
IF( ir1.EQ.0 ) THEN
|
||
|
*
|
||
|
* Column norms are periodically updated by explicit
|
||
|
* norm computation.
|
||
|
*[!] Caveat:
|
||
|
* Unfortunately, some BLAS implementations compute SCNRM2(M,A(1,p),1)
|
||
|
* as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
|
||
|
* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
|
||
|
* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
|
||
|
* Hence, SCNRM2 cannot be trusted, not even in the case when
|
||
|
* the true norm is far from the under(over)flow boundaries.
|
||
|
* If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF
|
||
|
* below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )".
|
||
|
*
|
||
|
IF( ( SVA( p ).LT.ROOTBIG ) .AND.
|
||
|
$ ( SVA( p ).GT.ROOTSFMIN ) ) THEN
|
||
|
SVA( p ) = SCNRM2( M, A( 1, p ), 1 )
|
||
|
ELSE
|
||
|
TEMP1 = ZERO
|
||
|
AAPP = ONE
|
||
|
CALL CLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
|
||
|
SVA( p ) = TEMP1*SQRT( AAPP )
|
||
|
END IF
|
||
|
AAPP = SVA( p )
|
||
|
ELSE
|
||
|
AAPP = SVA( p )
|
||
|
END IF
|
||
|
*
|
||
|
IF( AAPP.GT.ZERO ) THEN
|
||
|
*
|
||
|
PSKIPPED = 0
|
||
|
*
|
||
|
DO 2002 q = p + 1, MIN( igl+KBL-1, N )
|
||
|
*
|
||
|
AAQQ = SVA( q )
|
||
|
*
|
||
|
IF( AAQQ.GT.ZERO ) THEN
|
||
|
*
|
||
|
AAPP0 = AAPP
|
||
|
IF( AAQQ.GE.ONE ) THEN
|
||
|
ROTOK = ( SMALL*AAPP ).LE.AAQQ
|
||
|
IF( AAPP.LT.( BIG / AAQQ ) ) THEN
|
||
|
AAPQ = ( CDOTC( M, A( 1, p ), 1,
|
||
|
$ A( 1, q ), 1 ) / AAQQ ) / AAPP
|
||
|
ELSE
|
||
|
CALL CCOPY( M, A( 1, p ), 1,
|
||
|
$ CWORK(N+1), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, AAPP, ONE,
|
||
|
$ M, 1, CWORK(N+1), LDA, IERR )
|
||
|
AAPQ = CDOTC( M, CWORK(N+1), 1,
|
||
|
$ A( 1, q ), 1 ) / AAQQ
|
||
|
END IF
|
||
|
ELSE
|
||
|
ROTOK = AAPP.LE.( AAQQ / SMALL )
|
||
|
IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
|
||
|
AAPQ = ( CDOTC( M, A( 1, p ), 1,
|
||
|
$ A( 1, q ), 1 ) / AAPP ) / AAQQ
|
||
|
ELSE
|
||
|
CALL CCOPY( M, A( 1, q ), 1,
|
||
|
$ CWORK(N+1), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, AAQQ,
|
||
|
$ ONE, M, 1,
|
||
|
$ CWORK(N+1), LDA, IERR )
|
||
|
AAPQ = CDOTC( M, A(1, p ), 1,
|
||
|
$ CWORK(N+1), 1 ) / AAPP
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q)
|
||
|
AAPQ1 = -ABS(AAPQ)
|
||
|
MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
|
||
|
*
|
||
|
* TO rotate or NOT to rotate, THAT is the question ...
|
||
|
*
|
||
|
IF( ABS( AAPQ1 ).GT.TOL ) THEN
|
||
|
OMPQ = AAPQ / ABS(AAPQ)
|
||
|
*
|
||
|
* .. rotate
|
||
|
*[RTD] ROTATED = ROTATED + ONE
|
||
|
*
|
||
|
IF( ir1.EQ.0 ) THEN
|
||
|
NOTROT = 0
|
||
|
PSKIPPED = 0
|
||
|
ISWROT = ISWROT + 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( ROTOK ) THEN
|
||
|
*
|
||
|
AQOAP = AAQQ / AAPP
|
||
|
APOAQ = AAPP / AAQQ
|
||
|
THETA = -HALF*ABS( AQOAP-APOAQ )/AAPQ1
|
||
|
*
|
||
|
IF( ABS( THETA ).GT.BIGTHETA ) THEN
|
||
|
*
|
||
|
T = HALF / THETA
|
||
|
CS = ONE
|
||
|
|
||
|
CALL CROT( M, A(1,p), 1, A(1,q), 1,
|
||
|
$ CS, CONJG(OMPQ)*T )
|
||
|
IF ( RSVEC ) THEN
|
||
|
CALL CROT( MVL, V(1,p), 1,
|
||
|
$ V(1,q), 1, CS, CONJG(OMPQ)*T )
|
||
|
END IF
|
||
|
|
||
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
||
|
$ ONE+T*APOAQ*AAPQ1 ) )
|
||
|
AAPP = AAPP*SQRT( MAX( ZERO,
|
||
|
$ ONE-T*AQOAP*AAPQ1 ) )
|
||
|
MXSINJ = MAX( MXSINJ, ABS( T ) )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* .. choose correct signum for THETA and rotate
|
||
|
*
|
||
|
THSIGN = -SIGN( ONE, AAPQ1 )
|
||
|
T = ONE / ( THETA+THSIGN*
|
||
|
$ SQRT( ONE+THETA*THETA ) )
|
||
|
CS = SQRT( ONE / ( ONE+T*T ) )
|
||
|
SN = T*CS
|
||
|
*
|
||
|
MXSINJ = MAX( MXSINJ, ABS( SN ) )
|
||
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
||
|
$ ONE+T*APOAQ*AAPQ1 ) )
|
||
|
AAPP = AAPP*SQRT( MAX( ZERO,
|
||
|
$ ONE-T*AQOAP*AAPQ1 ) )
|
||
|
*
|
||
|
CALL CROT( M, A(1,p), 1, A(1,q), 1,
|
||
|
$ CS, CONJG(OMPQ)*SN )
|
||
|
IF ( RSVEC ) THEN
|
||
|
CALL CROT( MVL, V(1,p), 1,
|
||
|
$ V(1,q), 1, CS, CONJG(OMPQ)*SN )
|
||
|
END IF
|
||
|
END IF
|
||
|
CWORK(p) = -CWORK(q) * OMPQ
|
||
|
*
|
||
|
ELSE
|
||
|
* .. have to use modified Gram-Schmidt like transformation
|
||
|
CALL CCOPY( M, A( 1, p ), 1,
|
||
|
$ CWORK(N+1), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, AAPP, ONE, M,
|
||
|
$ 1, CWORK(N+1), LDA,
|
||
|
$ IERR )
|
||
|
CALL CLASCL( 'G', 0, 0, AAQQ, ONE, M,
|
||
|
$ 1, A( 1, q ), LDA, IERR )
|
||
|
CALL CAXPY( M, -AAPQ, CWORK(N+1), 1,
|
||
|
$ A( 1, q ), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, ONE, AAQQ, M,
|
||
|
$ 1, A( 1, q ), LDA, IERR )
|
||
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
||
|
$ ONE-AAPQ1*AAPQ1 ) )
|
||
|
MXSINJ = MAX( MXSINJ, SFMIN )
|
||
|
END IF
|
||
|
* END IF ROTOK THEN ... ELSE
|
||
|
*
|
||
|
* In the case of cancellation in updating SVA(q), SVA(p)
|
||
|
* recompute SVA(q), SVA(p).
|
||
|
*
|
||
|
IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
|
||
|
$ THEN
|
||
|
IF( ( AAQQ.LT.ROOTBIG ) .AND.
|
||
|
$ ( AAQQ.GT.ROOTSFMIN ) ) THEN
|
||
|
SVA( q ) = SCNRM2( M, A( 1, q ), 1 )
|
||
|
ELSE
|
||
|
T = ZERO
|
||
|
AAQQ = ONE
|
||
|
CALL CLASSQ( M, A( 1, q ), 1, T,
|
||
|
$ AAQQ )
|
||
|
SVA( q ) = T*SQRT( AAQQ )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
|
||
|
IF( ( AAPP.LT.ROOTBIG ) .AND.
|
||
|
$ ( AAPP.GT.ROOTSFMIN ) ) THEN
|
||
|
AAPP = SCNRM2( M, A( 1, p ), 1 )
|
||
|
ELSE
|
||
|
T = ZERO
|
||
|
AAPP = ONE
|
||
|
CALL CLASSQ( M, A( 1, p ), 1, T,
|
||
|
$ AAPP )
|
||
|
AAPP = T*SQRT( AAPP )
|
||
|
END IF
|
||
|
SVA( p ) = AAPP
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
* A(:,p) and A(:,q) already numerically orthogonal
|
||
|
IF( ir1.EQ.0 )NOTROT = NOTROT + 1
|
||
|
*[RTD] SKIPPED = SKIPPED + 1
|
||
|
PSKIPPED = PSKIPPED + 1
|
||
|
END IF
|
||
|
ELSE
|
||
|
* A(:,q) is zero column
|
||
|
IF( ir1.EQ.0 )NOTROT = NOTROT + 1
|
||
|
PSKIPPED = PSKIPPED + 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( ( i.LE.SWBAND ) .AND.
|
||
|
$ ( PSKIPPED.GT.ROWSKIP ) ) THEN
|
||
|
IF( ir1.EQ.0 )AAPP = -AAPP
|
||
|
NOTROT = 0
|
||
|
GO TO 2103
|
||
|
END IF
|
||
|
*
|
||
|
2002 CONTINUE
|
||
|
* END q-LOOP
|
||
|
*
|
||
|
2103 CONTINUE
|
||
|
* bailed out of q-loop
|
||
|
*
|
||
|
SVA( p ) = AAPP
|
||
|
*
|
||
|
ELSE
|
||
|
SVA( p ) = AAPP
|
||
|
IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
|
||
|
$ NOTROT = NOTROT + MIN( igl+KBL-1, N ) - p
|
||
|
END IF
|
||
|
*
|
||
|
2001 CONTINUE
|
||
|
* end of the p-loop
|
||
|
* end of doing the block ( ibr, ibr )
|
||
|
1002 CONTINUE
|
||
|
* end of ir1-loop
|
||
|
*
|
||
|
* ... go to the off diagonal blocks
|
||
|
*
|
||
|
igl = ( ibr-1 )*KBL + 1
|
||
|
*
|
||
|
DO 2010 jbc = ibr + 1, NBL
|
||
|
*
|
||
|
jgl = ( jbc-1 )*KBL + 1
|
||
|
*
|
||
|
* doing the block at ( ibr, jbc )
|
||
|
*
|
||
|
IJBLSK = 0
|
||
|
DO 2100 p = igl, MIN( igl+KBL-1, N )
|
||
|
*
|
||
|
AAPP = SVA( p )
|
||
|
IF( AAPP.GT.ZERO ) THEN
|
||
|
*
|
||
|
PSKIPPED = 0
|
||
|
*
|
||
|
DO 2200 q = jgl, MIN( jgl+KBL-1, N )
|
||
|
*
|
||
|
AAQQ = SVA( q )
|
||
|
IF( AAQQ.GT.ZERO ) THEN
|
||
|
AAPP0 = AAPP
|
||
|
*
|
||
|
* .. M x 2 Jacobi SVD ..
|
||
|
*
|
||
|
* Safe Gram matrix computation
|
||
|
*
|
||
|
IF( AAQQ.GE.ONE ) THEN
|
||
|
IF( AAPP.GE.AAQQ ) THEN
|
||
|
ROTOK = ( SMALL*AAPP ).LE.AAQQ
|
||
|
ELSE
|
||
|
ROTOK = ( SMALL*AAQQ ).LE.AAPP
|
||
|
END IF
|
||
|
IF( AAPP.LT.( BIG / AAQQ ) ) THEN
|
||
|
AAPQ = ( CDOTC( M, A( 1, p ), 1,
|
||
|
$ A( 1, q ), 1 ) / AAQQ ) / AAPP
|
||
|
ELSE
|
||
|
CALL CCOPY( M, A( 1, p ), 1,
|
||
|
$ CWORK(N+1), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, AAPP,
|
||
|
$ ONE, M, 1,
|
||
|
$ CWORK(N+1), LDA, IERR )
|
||
|
AAPQ = CDOTC( M, CWORK(N+1), 1,
|
||
|
$ A( 1, q ), 1 ) / AAQQ
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF( AAPP.GE.AAQQ ) THEN
|
||
|
ROTOK = AAPP.LE.( AAQQ / SMALL )
|
||
|
ELSE
|
||
|
ROTOK = AAQQ.LE.( AAPP / SMALL )
|
||
|
END IF
|
||
|
IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
|
||
|
AAPQ = ( CDOTC( M, A( 1, p ), 1,
|
||
|
$ A( 1, q ), 1 ) / MAX(AAQQ,AAPP) )
|
||
|
$ / MIN(AAQQ,AAPP)
|
||
|
ELSE
|
||
|
CALL CCOPY( M, A( 1, q ), 1,
|
||
|
$ CWORK(N+1), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, AAQQ,
|
||
|
$ ONE, M, 1,
|
||
|
$ CWORK(N+1), LDA, IERR )
|
||
|
AAPQ = CDOTC( M, A( 1, p ), 1,
|
||
|
$ CWORK(N+1), 1 ) / AAPP
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
|
||
|
AAPQ1 = -ABS(AAPQ)
|
||
|
MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
|
||
|
*
|
||
|
* TO rotate or NOT to rotate, THAT is the question ...
|
||
|
*
|
||
|
IF( ABS( AAPQ1 ).GT.TOL ) THEN
|
||
|
OMPQ = AAPQ / ABS(AAPQ)
|
||
|
NOTROT = 0
|
||
|
*[RTD] ROTATED = ROTATED + 1
|
||
|
PSKIPPED = 0
|
||
|
ISWROT = ISWROT + 1
|
||
|
*
|
||
|
IF( ROTOK ) THEN
|
||
|
*
|
||
|
AQOAP = AAQQ / AAPP
|
||
|
APOAQ = AAPP / AAQQ
|
||
|
THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
|
||
|
IF( AAQQ.GT.AAPP0 )THETA = -THETA
|
||
|
*
|
||
|
IF( ABS( THETA ).GT.BIGTHETA ) THEN
|
||
|
T = HALF / THETA
|
||
|
CS = ONE
|
||
|
CALL CROT( M, A(1,p), 1, A(1,q), 1,
|
||
|
$ CS, CONJG(OMPQ)*T )
|
||
|
IF( RSVEC ) THEN
|
||
|
CALL CROT( MVL, V(1,p), 1,
|
||
|
$ V(1,q), 1, CS, CONJG(OMPQ)*T )
|
||
|
END IF
|
||
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
||
|
$ ONE+T*APOAQ*AAPQ1 ) )
|
||
|
AAPP = AAPP*SQRT( MAX( ZERO,
|
||
|
$ ONE-T*AQOAP*AAPQ1 ) )
|
||
|
MXSINJ = MAX( MXSINJ, ABS( T ) )
|
||
|
ELSE
|
||
|
*
|
||
|
* .. choose correct signum for THETA and rotate
|
||
|
*
|
||
|
THSIGN = -SIGN( ONE, AAPQ1 )
|
||
|
IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
|
||
|
T = ONE / ( THETA+THSIGN*
|
||
|
$ SQRT( ONE+THETA*THETA ) )
|
||
|
CS = SQRT( ONE / ( ONE+T*T ) )
|
||
|
SN = T*CS
|
||
|
MXSINJ = MAX( MXSINJ, ABS( SN ) )
|
||
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
||
|
$ ONE+T*APOAQ*AAPQ1 ) )
|
||
|
AAPP = AAPP*SQRT( MAX( ZERO,
|
||
|
$ ONE-T*AQOAP*AAPQ1 ) )
|
||
|
*
|
||
|
CALL CROT( M, A(1,p), 1, A(1,q), 1,
|
||
|
$ CS, CONJG(OMPQ)*SN )
|
||
|
IF( RSVEC ) THEN
|
||
|
CALL CROT( MVL, V(1,p), 1,
|
||
|
$ V(1,q), 1, CS, CONJG(OMPQ)*SN )
|
||
|
END IF
|
||
|
END IF
|
||
|
CWORK(p) = -CWORK(q) * OMPQ
|
||
|
*
|
||
|
ELSE
|
||
|
* .. have to use modified Gram-Schmidt like transformation
|
||
|
IF( AAPP.GT.AAQQ ) THEN
|
||
|
CALL CCOPY( M, A( 1, p ), 1,
|
||
|
$ CWORK(N+1), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, AAPP, ONE,
|
||
|
$ M, 1, CWORK(N+1),LDA,
|
||
|
$ IERR )
|
||
|
CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
|
||
|
$ M, 1, A( 1, q ), LDA,
|
||
|
$ IERR )
|
||
|
CALL CAXPY( M, -AAPQ, CWORK(N+1),
|
||
|
$ 1, A( 1, q ), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, ONE, AAQQ,
|
||
|
$ M, 1, A( 1, q ), LDA,
|
||
|
$ IERR )
|
||
|
SVA( q ) = AAQQ*SQRT( MAX( ZERO,
|
||
|
$ ONE-AAPQ1*AAPQ1 ) )
|
||
|
MXSINJ = MAX( MXSINJ, SFMIN )
|
||
|
ELSE
|
||
|
CALL CCOPY( M, A( 1, q ), 1,
|
||
|
$ CWORK(N+1), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
|
||
|
$ M, 1, CWORK(N+1),LDA,
|
||
|
$ IERR )
|
||
|
CALL CLASCL( 'G', 0, 0, AAPP, ONE,
|
||
|
$ M, 1, A( 1, p ), LDA,
|
||
|
$ IERR )
|
||
|
CALL CAXPY( M, -CONJG(AAPQ),
|
||
|
$ CWORK(N+1), 1, A( 1, p ), 1 )
|
||
|
CALL CLASCL( 'G', 0, 0, ONE, AAPP,
|
||
|
$ M, 1, A( 1, p ), LDA,
|
||
|
$ IERR )
|
||
|
SVA( p ) = AAPP*SQRT( MAX( ZERO,
|
||
|
$ ONE-AAPQ1*AAPQ1 ) )
|
||
|
MXSINJ = MAX( MXSINJ, SFMIN )
|
||
|
END IF
|
||
|
END IF
|
||
|
* END IF ROTOK THEN ... ELSE
|
||
|
*
|
||
|
* In the case of cancellation in updating SVA(q), SVA(p)
|
||
|
* .. recompute SVA(q), SVA(p)
|
||
|
IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
|
||
|
$ THEN
|
||
|
IF( ( AAQQ.LT.ROOTBIG ) .AND.
|
||
|
$ ( AAQQ.GT.ROOTSFMIN ) ) THEN
|
||
|
SVA( q ) = SCNRM2( M, A( 1, q ), 1)
|
||
|
ELSE
|
||
|
T = ZERO
|
||
|
AAQQ = ONE
|
||
|
CALL CLASSQ( M, A( 1, q ), 1, T,
|
||
|
$ AAQQ )
|
||
|
SVA( q ) = T*SQRT( AAQQ )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
|
||
|
IF( ( AAPP.LT.ROOTBIG ) .AND.
|
||
|
$ ( AAPP.GT.ROOTSFMIN ) ) THEN
|
||
|
AAPP = SCNRM2( M, A( 1, p ), 1 )
|
||
|
ELSE
|
||
|
T = ZERO
|
||
|
AAPP = ONE
|
||
|
CALL CLASSQ( M, A( 1, p ), 1, T,
|
||
|
$ AAPP )
|
||
|
AAPP = T*SQRT( AAPP )
|
||
|
END IF
|
||
|
SVA( p ) = AAPP
|
||
|
END IF
|
||
|
* end of OK rotation
|
||
|
ELSE
|
||
|
NOTROT = NOTROT + 1
|
||
|
*[RTD] SKIPPED = SKIPPED + 1
|
||
|
PSKIPPED = PSKIPPED + 1
|
||
|
IJBLSK = IJBLSK + 1
|
||
|
END IF
|
||
|
ELSE
|
||
|
NOTROT = NOTROT + 1
|
||
|
PSKIPPED = PSKIPPED + 1
|
||
|
IJBLSK = IJBLSK + 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
|
||
|
$ THEN
|
||
|
SVA( p ) = AAPP
|
||
|
NOTROT = 0
|
||
|
GO TO 2011
|
||
|
END IF
|
||
|
IF( ( i.LE.SWBAND ) .AND.
|
||
|
$ ( PSKIPPED.GT.ROWSKIP ) ) THEN
|
||
|
AAPP = -AAPP
|
||
|
NOTROT = 0
|
||
|
GO TO 2203
|
||
|
END IF
|
||
|
*
|
||
|
2200 CONTINUE
|
||
|
* end of the q-loop
|
||
|
2203 CONTINUE
|
||
|
*
|
||
|
SVA( p ) = AAPP
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
|
||
|
$ MIN( jgl+KBL-1, N ) - jgl + 1
|
||
|
IF( AAPP.LT.ZERO )NOTROT = 0
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
2100 CONTINUE
|
||
|
* end of the p-loop
|
||
|
2010 CONTINUE
|
||
|
* end of the jbc-loop
|
||
|
2011 CONTINUE
|
||
|
*2011 bailed out of the jbc-loop
|
||
|
DO 2012 p = igl, MIN( igl+KBL-1, N )
|
||
|
SVA( p ) = ABS( SVA( p ) )
|
||
|
2012 CONTINUE
|
||
|
***
|
||
|
2000 CONTINUE
|
||
|
*2000 :: end of the ibr-loop
|
||
|
*
|
||
|
* .. update SVA(N)
|
||
|
IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
|
||
|
$ THEN
|
||
|
SVA( N ) = SCNRM2( M, A( 1, N ), 1 )
|
||
|
ELSE
|
||
|
T = ZERO
|
||
|
AAPP = ONE
|
||
|
CALL CLASSQ( M, A( 1, N ), 1, T, AAPP )
|
||
|
SVA( N ) = T*SQRT( AAPP )
|
||
|
END IF
|
||
|
*
|
||
|
* Additional steering devices
|
||
|
*
|
||
|
IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
|
||
|
$ ( ISWROT.LE.N ) ) )SWBAND = i
|
||
|
*
|
||
|
IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( REAL( N ) )*
|
||
|
$ TOL ) .AND. ( REAL( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
|
||
|
GO TO 1994
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOTROT.GE.EMPTSW )GO TO 1994
|
||
|
*
|
||
|
1993 CONTINUE
|
||
|
* end i=1:NSWEEP loop
|
||
|
*
|
||
|
* #:( Reaching this point means that the procedure has not converged.
|
||
|
INFO = NSWEEP - 1
|
||
|
GO TO 1995
|
||
|
*
|
||
|
1994 CONTINUE
|
||
|
* #:) Reaching this point means numerical convergence after the i-th
|
||
|
* sweep.
|
||
|
*
|
||
|
INFO = 0
|
||
|
* #:) INFO = 0 confirms successful iterations.
|
||
|
1995 CONTINUE
|
||
|
*
|
||
|
* Sort the singular values and find how many are above
|
||
|
* the underflow threshold.
|
||
|
*
|
||
|
N2 = 0
|
||
|
N4 = 0
|
||
|
DO 5991 p = 1, N - 1
|
||
|
q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
|
||
|
IF( p.NE.q ) THEN
|
||
|
TEMP1 = SVA( p )
|
||
|
SVA( p ) = SVA( q )
|
||
|
SVA( q ) = TEMP1
|
||
|
CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
|
||
|
IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
|
||
|
END IF
|
||
|
IF( SVA( p ).NE.ZERO ) THEN
|
||
|
N4 = N4 + 1
|
||
|
IF( SVA( p )*SKL.GT.SFMIN )N2 = N2 + 1
|
||
|
END IF
|
||
|
5991 CONTINUE
|
||
|
IF( SVA( N ).NE.ZERO ) THEN
|
||
|
N4 = N4 + 1
|
||
|
IF( SVA( N )*SKL.GT.SFMIN )N2 = N2 + 1
|
||
|
END IF
|
||
|
*
|
||
|
* Normalize the left singular vectors.
|
||
|
*
|
||
|
IF( LSVEC .OR. UCTOL ) THEN
|
||
|
DO 1998 p = 1, N4
|
||
|
* CALL CSSCAL( M, ONE / SVA( p ), A( 1, p ), 1 )
|
||
|
CALL CLASCL( 'G',0,0, SVA(p), ONE, M, 1, A(1,p), M, IERR )
|
||
|
1998 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Scale the product of Jacobi rotations.
|
||
|
*
|
||
|
IF( RSVEC ) THEN
|
||
|
DO 2399 p = 1, N
|
||
|
TEMP1 = ONE / SCNRM2( MVL, V( 1, p ), 1 )
|
||
|
CALL CSSCAL( MVL, TEMP1, V( 1, p ), 1 )
|
||
|
2399 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Undo scaling, if necessary (and possible).
|
||
|
IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / SKL ) ) )
|
||
|
$ .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( MAX( N2, 1 ) ) .GT.
|
||
|
$ ( SFMIN / SKL ) ) ) ) THEN
|
||
|
DO 2400 p = 1, N
|
||
|
SVA( P ) = SKL*SVA( P )
|
||
|
2400 CONTINUE
|
||
|
SKL = ONE
|
||
|
END IF
|
||
|
*
|
||
|
RWORK( 1 ) = SKL
|
||
|
* The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE
|
||
|
* then some of the singular values may overflow or underflow and
|
||
|
* the spectrum is given in this factored representation.
|
||
|
*
|
||
|
RWORK( 2 ) = REAL( N4 )
|
||
|
* N4 is the number of computed nonzero singular values of A.
|
||
|
*
|
||
|
RWORK( 3 ) = REAL( N2 )
|
||
|
* N2 is the number of singular values of A greater than SFMIN.
|
||
|
* If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers
|
||
|
* that may carry some information.
|
||
|
*
|
||
|
RWORK( 4 ) = REAL( i )
|
||
|
* i is the index of the last sweep before declaring convergence.
|
||
|
*
|
||
|
RWORK( 5 ) = MXAAPQ
|
||
|
* MXAAPQ is the largest absolute value of scaled pivots in the
|
||
|
* last sweep
|
||
|
*
|
||
|
RWORK( 6 ) = MXSINJ
|
||
|
* MXSINJ is the largest absolute value of the sines of Jacobi angles
|
||
|
* in the last sweep
|
||
|
*
|
||
|
RETURN
|
||
|
* ..
|
||
|
* .. END OF CGESVJ
|
||
|
* ..
|
||
|
END
|
||
|
*
|