You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
420 lines
12 KiB
420 lines
12 KiB
2 years ago
|
*> \brief \b CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CLA_GBAMV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbamv.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbamv.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbamv.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
|
||
|
* INCX, BETA, Y, INCY )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* REAL ALPHA, BETA
|
||
|
* INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX AB( LDAB, * ), X( * )
|
||
|
* REAL Y( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLA_GBAMV performs one of the matrix-vector operations
|
||
|
*>
|
||
|
*> y := alpha*abs(A)*abs(x) + beta*abs(y),
|
||
|
*> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
|
||
|
*>
|
||
|
*> where alpha and beta are scalars, x and y are vectors and A is an
|
||
|
*> m by n matrix.
|
||
|
*>
|
||
|
*> This function is primarily used in calculating error bounds.
|
||
|
*> To protect against underflow during evaluation, components in
|
||
|
*> the resulting vector are perturbed away from zero by (N+1)
|
||
|
*> times the underflow threshold. To prevent unnecessarily large
|
||
|
*> errors for block-structure embedded in general matrices,
|
||
|
*> "symbolically" zero components are not perturbed. A zero
|
||
|
*> entry is considered "symbolic" if all multiplications involved
|
||
|
*> in computing that entry have at least one zero multiplicand.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is INTEGER
|
||
|
*> On entry, TRANS specifies the operation to be performed as
|
||
|
*> follows:
|
||
|
*>
|
||
|
*> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
|
||
|
*> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
|
||
|
*> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
|
||
|
*>
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> On entry, M specifies the number of rows of the matrix A.
|
||
|
*> M must be at least zero.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> On entry, N specifies the number of columns of the matrix A.
|
||
|
*> N must be at least zero.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ALPHA
|
||
|
*> \verbatim
|
||
|
*> ALPHA is REAL
|
||
|
*> On entry, ALPHA specifies the scalar alpha.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AB
|
||
|
*> \verbatim
|
||
|
*> AB is COMPLEX array, dimension (LDAB,n)
|
||
|
*> Before entry, the leading m by n part of the array AB must
|
||
|
*> contain the matrix of coefficients.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAB
|
||
|
*> \verbatim
|
||
|
*> LDAB is INTEGER
|
||
|
*> On entry, LDAB specifies the first dimension of AB as declared
|
||
|
*> in the calling (sub) program. LDAB must be at least
|
||
|
*> max( 1, m ).
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX array, dimension
|
||
|
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||
|
*> and at least
|
||
|
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||
|
*> Before entry, the incremented array X must contain the
|
||
|
*> vector x.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] INCX
|
||
|
*> \verbatim
|
||
|
*> INCX is INTEGER
|
||
|
*> On entry, INCX specifies the increment for the elements of
|
||
|
*> X. INCX must not be zero.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is REAL
|
||
|
*> On entry, BETA specifies the scalar beta. When BETA is
|
||
|
*> supplied as zero then Y need not be set on input.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Y
|
||
|
*> \verbatim
|
||
|
*> Y is REAL array, dimension
|
||
|
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||
|
*> and at least
|
||
|
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||
|
*> Before entry with BETA non-zero, the incremented array Y
|
||
|
*> must contain the vector y. On exit, Y is overwritten by the
|
||
|
*> updated vector y.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] INCY
|
||
|
*> \verbatim
|
||
|
*> INCY is INTEGER
|
||
|
*> On entry, INCY specifies the increment for the elements of
|
||
|
*> Y. INCY must not be zero.
|
||
|
*> Unchanged on exit.
|
||
|
*>
|
||
|
*> Level 2 Blas routine.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexGBcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
|
||
|
$ INCX, BETA, Y, INCY )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
REAL ALPHA, BETA
|
||
|
INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX AB( LDAB, * ), X( * )
|
||
|
REAL Y( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL SYMB_ZERO
|
||
|
REAL TEMP, SAFE1
|
||
|
INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
|
||
|
COMPLEX CDUM
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, SLAMCH
|
||
|
REAL SLAMCH
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
EXTERNAL ILATRANS
|
||
|
INTEGER ILATRANS
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, ABS, REAL, AIMAG, SIGN
|
||
|
* ..
|
||
|
* .. Statement Functions
|
||
|
REAL CABS1
|
||
|
* ..
|
||
|
* .. Statement Function Definitions ..
|
||
|
CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
|
||
|
$ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
|
||
|
$ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
|
||
|
INFO = 1
|
||
|
ELSE IF( M.LT.0 )THEN
|
||
|
INFO = 2
|
||
|
ELSE IF( N.LT.0 )THEN
|
||
|
INFO = 3
|
||
|
ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
|
||
|
INFO = 4
|
||
|
ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
|
||
|
INFO = 5
|
||
|
ELSE IF( LDAB.LT.KL+KU+1 )THEN
|
||
|
INFO = 6
|
||
|
ELSE IF( INCX.EQ.0 )THEN
|
||
|
INFO = 8
|
||
|
ELSE IF( INCY.EQ.0 )THEN
|
||
|
INFO = 11
|
||
|
END IF
|
||
|
IF( INFO.NE.0 )THEN
|
||
|
CALL XERBLA( 'CLA_GBAMV ', INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible.
|
||
|
*
|
||
|
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
|
||
|
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||
|
* up the start points in X and Y.
|
||
|
*
|
||
|
IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
|
||
|
LENX = N
|
||
|
LENY = M
|
||
|
ELSE
|
||
|
LENX = M
|
||
|
LENY = N
|
||
|
END IF
|
||
|
IF( INCX.GT.0 )THEN
|
||
|
KX = 1
|
||
|
ELSE
|
||
|
KX = 1 - ( LENX - 1 )*INCX
|
||
|
END IF
|
||
|
IF( INCY.GT.0 )THEN
|
||
|
KY = 1
|
||
|
ELSE
|
||
|
KY = 1 - ( LENY - 1 )*INCY
|
||
|
END IF
|
||
|
*
|
||
|
* Set SAFE1 essentially to be the underflow threshold times the
|
||
|
* number of additions in each row.
|
||
|
*
|
||
|
SAFE1 = SLAMCH( 'Safe minimum' )
|
||
|
SAFE1 = (N+1)*SAFE1
|
||
|
*
|
||
|
* Form y := alpha*abs(A)*abs(x) + beta*abs(y).
|
||
|
*
|
||
|
* The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
|
||
|
* the inexact flag. Still doesn't help change the iteration order
|
||
|
* to per-column.
|
||
|
*
|
||
|
KD = KU + 1
|
||
|
KE = KL + 1
|
||
|
IY = KY
|
||
|
IF ( INCX.EQ.1 ) THEN
|
||
|
IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
|
||
|
DO I = 1, LENY
|
||
|
IF ( BETA .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
Y( IY ) = 0.0
|
||
|
ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
ELSE
|
||
|
SYMB_ZERO = .FALSE.
|
||
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
||
|
END IF
|
||
|
IF ( ALPHA .NE. 0.0 ) THEN
|
||
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
|
||
|
TEMP = CABS1( AB( KD+I-J, J ) )
|
||
|
SYMB_ZERO = SYMB_ZERO .AND.
|
||
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
||
|
|
||
|
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
|
||
|
END DO
|
||
|
END IF
|
||
|
|
||
|
IF ( .NOT.SYMB_ZERO)
|
||
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
||
|
|
||
|
IY = IY + INCY
|
||
|
END DO
|
||
|
ELSE
|
||
|
DO I = 1, LENY
|
||
|
IF ( BETA .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
Y( IY ) = 0.0
|
||
|
ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
ELSE
|
||
|
SYMB_ZERO = .FALSE.
|
||
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
||
|
END IF
|
||
|
IF ( ALPHA .NE. 0.0 ) THEN
|
||
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
|
||
|
TEMP = CABS1( AB( KE-I+J, I ) )
|
||
|
SYMB_ZERO = SYMB_ZERO .AND.
|
||
|
$ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
||
|
|
||
|
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
|
||
|
END DO
|
||
|
END IF
|
||
|
|
||
|
IF ( .NOT.SYMB_ZERO)
|
||
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
||
|
|
||
|
IY = IY + INCY
|
||
|
END DO
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
|
||
|
DO I = 1, LENY
|
||
|
IF ( BETA .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
Y( IY ) = 0.0
|
||
|
ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
ELSE
|
||
|
SYMB_ZERO = .FALSE.
|
||
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
||
|
END IF
|
||
|
IF ( ALPHA .NE. 0.0 ) THEN
|
||
|
JX = KX
|
||
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
|
||
|
TEMP = CABS1( AB( KD+I-J, J ) )
|
||
|
SYMB_ZERO = SYMB_ZERO .AND.
|
||
|
$ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
||
|
|
||
|
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
|
||
|
JX = JX + INCX
|
||
|
END DO
|
||
|
END IF
|
||
|
|
||
|
IF ( .NOT.SYMB_ZERO )
|
||
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
||
|
|
||
|
IY = IY + INCY
|
||
|
END DO
|
||
|
ELSE
|
||
|
DO I = 1, LENY
|
||
|
IF ( BETA .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
Y( IY ) = 0.0
|
||
|
ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
|
||
|
SYMB_ZERO = .TRUE.
|
||
|
ELSE
|
||
|
SYMB_ZERO = .FALSE.
|
||
|
Y( IY ) = BETA * ABS( Y( IY ) )
|
||
|
END IF
|
||
|
IF ( ALPHA .NE. 0.0 ) THEN
|
||
|
JX = KX
|
||
|
DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
|
||
|
TEMP = CABS1( AB( KE-I+J, I ) )
|
||
|
SYMB_ZERO = SYMB_ZERO .AND.
|
||
|
$ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
|
||
|
|
||
|
Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
|
||
|
JX = JX + INCX
|
||
|
END DO
|
||
|
END IF
|
||
|
|
||
|
IF ( .NOT.SYMB_ZERO )
|
||
|
$ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
|
||
|
|
||
|
IY = IY + INCY
|
||
|
END DO
|
||
|
END IF
|
||
|
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLA_GBAMV
|
||
|
*
|
||
|
END
|