Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

297 lines
7.5 KiB

2 years ago
*> \brief \b CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLA_HERCOND_X + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_hercond_x.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_hercond_x.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_hercond_x.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* REAL FUNCTION CLA_HERCOND_X( UPLO, N, A, LDA, AF, LDAF, IPIV, X,
* INFO, WORK, RWORK )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER N, LDA, LDAF, INFO
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
* REAL RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLA_HERCOND_X computes the infinity norm condition number of
*> op(A) * diag(X) where X is a COMPLEX vector.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the N-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*> AF is COMPLEX array, dimension (LDAF,N)
*> The block diagonal matrix D and the multipliers used to
*> obtain the factor U or L as computed by CHETRF.
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*> LDAF is INTEGER
*> The leading dimension of the array AF. LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D
*> as determined by CHETRF.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension (N)
*> The vector X in the formula op(A) * diag(X).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: Successful exit.
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexHEcomputational
*
* =====================================================================
REAL FUNCTION CLA_HERCOND_X( UPLO, N, A, LDA, AF, LDAF, IPIV, X,
$ INFO, WORK, RWORK )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER N, LDA, LDAF, INFO
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
REAL RWORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER KASE, I, J
REAL AINVNM, ANORM, TMP
LOGICAL UP, UPPER
COMPLEX ZDUM
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLACN2, CHETRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function Definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
CLA_HERCOND_X = 0.0E+0
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF ( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLA_HERCOND_X', -INFO )
RETURN
END IF
UP = .FALSE.
IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
*
* Compute norm of op(A)*op2(C).
*
ANORM = 0.0
IF ( UP ) THEN
DO I = 1, N
TMP = 0.0E+0
DO J = 1, I
TMP = TMP + CABS1( A( J, I ) * X( J ) )
END DO
DO J = I+1, N
TMP = TMP + CABS1( A( I, J ) * X( J ) )
END DO
RWORK( I ) = TMP
ANORM = MAX( ANORM, TMP )
END DO
ELSE
DO I = 1, N
TMP = 0.0E+0
DO J = 1, I
TMP = TMP + CABS1( A( I, J ) * X( J ) )
END DO
DO J = I+1, N
TMP = TMP + CABS1( A( J, I ) * X( J ) )
END DO
RWORK( I ) = TMP
ANORM = MAX( ANORM, TMP )
END DO
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 ) THEN
CLA_HERCOND_X = 1.0E+0
RETURN
ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
RETURN
END IF
*
* Estimate the norm of inv(op(A)).
*
AINVNM = 0.0E+0
*
KASE = 0
10 CONTINUE
CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.2 ) THEN
*
* Multiply by R.
*
DO I = 1, N
WORK( I ) = WORK( I ) * RWORK( I )
END DO
*
IF ( UP ) THEN
CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
ELSE
CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
ENDIF
*
* Multiply by inv(X).
*
DO I = 1, N
WORK( I ) = WORK( I ) / X( I )
END DO
ELSE
*
* Multiply by inv(X**H).
*
DO I = 1, N
WORK( I ) = WORK( I ) / X( I )
END DO
*
IF ( UP ) THEN
CALL CHETRS( 'U', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
ELSE
CALL CHETRS( 'L', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
END IF
*
* Multiply by R.
*
DO I = 1, N
WORK( I ) = WORK( I ) * RWORK( I )
END DO
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM .NE. 0.0E+0 )
$ CLA_HERCOND_X = 1.0E+0 / AINVNM
*
RETURN
*
* End of CLA_HERCOND_X
*
END