You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
6.1 KiB
217 lines
6.1 KiB
2 years ago
|
*> \brief \b CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CLA_PORPVGRW + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_porpvgrw.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_porpvgrw.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_porpvgrw.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* REAL FUNCTION CLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER*1 UPLO
|
||
|
* INTEGER NCOLS, LDA, LDAF
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX A( LDA, * ), AF( LDAF, * )
|
||
|
* REAL WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*>
|
||
|
*> CLA_PORPVGRW computes the reciprocal pivot growth factor
|
||
|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
|
||
|
*> much less than 1, the stability of the LU factorization of the
|
||
|
*> (equilibrated) matrix A could be poor. This also means that the
|
||
|
*> solution X, estimated condition numbers, and error bounds could be
|
||
|
*> unreliable.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangle of A is stored;
|
||
|
*> = 'L': Lower triangle of A is stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NCOLS
|
||
|
*> \verbatim
|
||
|
*> NCOLS is INTEGER
|
||
|
*> The number of columns of the matrix A. NCOLS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> On entry, the N-by-N matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AF
|
||
|
*> \verbatim
|
||
|
*> AF is COMPLEX array, dimension (LDAF,N)
|
||
|
*> The triangular factor U or L from the Cholesky factorization
|
||
|
*> A = U**T*U or A = L*L**T, as computed by CPOTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAF
|
||
|
*> \verbatim
|
||
|
*> LDAF is INTEGER
|
||
|
*> The leading dimension of the array AF. LDAF >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexPOcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
REAL FUNCTION CLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER*1 UPLO
|
||
|
INTEGER NCOLS, LDA, LDAF
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX A( LDA, * ), AF( LDAF, * )
|
||
|
REAL WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
REAL AMAX, UMAX, RPVGRW
|
||
|
LOGICAL UPPER
|
||
|
COMPLEX ZDUM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
EXTERNAL LSAME
|
||
|
LOGICAL LSAME
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN, REAL, AIMAG
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
REAL CABS1
|
||
|
* ..
|
||
|
* .. Statement Function Definitions ..
|
||
|
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
UPPER = LSAME( 'Upper', UPLO )
|
||
|
*
|
||
|
* SPOTRF will have factored only the NCOLSxNCOLS leading submatrix,
|
||
|
* so we restrict the growth search to that submatrix and use only
|
||
|
* the first 2*NCOLS workspace entries.
|
||
|
*
|
||
|
RPVGRW = 1.0
|
||
|
DO I = 1, 2*NCOLS
|
||
|
WORK( I ) = 0.0
|
||
|
END DO
|
||
|
*
|
||
|
* Find the max magnitude entry of each column.
|
||
|
*
|
||
|
IF ( UPPER ) THEN
|
||
|
DO J = 1, NCOLS
|
||
|
DO I = 1, J
|
||
|
WORK( NCOLS+J ) =
|
||
|
$ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
|
||
|
END DO
|
||
|
END DO
|
||
|
ELSE
|
||
|
DO J = 1, NCOLS
|
||
|
DO I = J, NCOLS
|
||
|
WORK( NCOLS+J ) =
|
||
|
$ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
|
||
|
END DO
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
* Now find the max magnitude entry of each column of the factor in
|
||
|
* AF. No pivoting, so no permutations.
|
||
|
*
|
||
|
IF ( LSAME( 'Upper', UPLO ) ) THEN
|
||
|
DO J = 1, NCOLS
|
||
|
DO I = 1, J
|
||
|
WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
|
||
|
END DO
|
||
|
END DO
|
||
|
ELSE
|
||
|
DO J = 1, NCOLS
|
||
|
DO I = J, NCOLS
|
||
|
WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
|
||
|
END DO
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the *inverse* of the max element growth factor. Dividing
|
||
|
* by zero would imply the largest entry of the factor's column is
|
||
|
* zero. Than can happen when either the column of A is zero or
|
||
|
* massive pivots made the factor underflow to zero. Neither counts
|
||
|
* as growth in itself, so simply ignore terms with zero
|
||
|
* denominators.
|
||
|
*
|
||
|
IF ( LSAME( 'Upper', UPLO ) ) THEN
|
||
|
DO I = 1, NCOLS
|
||
|
UMAX = WORK( I )
|
||
|
AMAX = WORK( NCOLS+I )
|
||
|
IF ( UMAX /= 0.0 ) THEN
|
||
|
RPVGRW = MIN( AMAX / UMAX, RPVGRW )
|
||
|
END IF
|
||
|
END DO
|
||
|
ELSE
|
||
|
DO I = 1, NCOLS
|
||
|
UMAX = WORK( I )
|
||
|
AMAX = WORK( NCOLS+I )
|
||
|
IF ( UMAX /= 0.0 ) THEN
|
||
|
RPVGRW = MIN( AMAX / UMAX, RPVGRW )
|
||
|
END IF
|
||
|
END DO
|
||
|
END IF
|
||
|
|
||
|
CLA_PORPVGRW = RPVGRW
|
||
|
*
|
||
|
* End of CLA_PORPVGRW
|
||
|
*
|
||
|
END
|