You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
11 KiB
393 lines
11 KiB
2 years ago
|
*> \brief \b CLAGS2
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CLAGS2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clags2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clags2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clags2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
|
||
|
* SNV, CSQ, SNQ )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL UPPER
|
||
|
* REAL A1, A3, B1, B3, CSQ, CSU, CSV
|
||
|
* COMPLEX A2, B2, SNQ, SNU, SNV
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
|
||
|
*> that if ( UPPER ) then
|
||
|
*>
|
||
|
*> U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 )
|
||
|
*> ( 0 A3 ) ( x x )
|
||
|
*> and
|
||
|
*> V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 )
|
||
|
*> ( 0 B3 ) ( x x )
|
||
|
*>
|
||
|
*> or if ( .NOT.UPPER ) then
|
||
|
*>
|
||
|
*> U**H *A*Q = U**H *( A1 0 )*Q = ( x x )
|
||
|
*> ( A2 A3 ) ( 0 x )
|
||
|
*> and
|
||
|
*> V**H *B*Q = V**H *( B1 0 )*Q = ( x x )
|
||
|
*> ( B2 B3 ) ( 0 x )
|
||
|
*> where
|
||
|
*>
|
||
|
*> U = ( CSU SNU ), V = ( CSV SNV ),
|
||
|
*> ( -SNU**H CSU ) ( -SNV**H CSV )
|
||
|
*>
|
||
|
*> Q = ( CSQ SNQ )
|
||
|
*> ( -SNQ**H CSQ )
|
||
|
*>
|
||
|
*> The rows of the transformed A and B are parallel. Moreover, if the
|
||
|
*> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry
|
||
|
*> of A is not zero. If the input matrices A and B are both not zero,
|
||
|
*> then the transformed (2,2) element of B is not zero, except when the
|
||
|
*> first rows of input A and B are parallel and the second rows are
|
||
|
*> zero.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPPER
|
||
|
*> \verbatim
|
||
|
*> UPPER is LOGICAL
|
||
|
*> = .TRUE.: the input matrices A and B are upper triangular.
|
||
|
*> = .FALSE.: the input matrices A and B are lower triangular.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A1
|
||
|
*> \verbatim
|
||
|
*> A1 is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A2
|
||
|
*> \verbatim
|
||
|
*> A2 is COMPLEX
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A3
|
||
|
*> \verbatim
|
||
|
*> A3 is REAL
|
||
|
*> On entry, A1, A2 and A3 are elements of the input 2-by-2
|
||
|
*> upper (lower) triangular matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B1
|
||
|
*> \verbatim
|
||
|
*> B1 is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B2
|
||
|
*> \verbatim
|
||
|
*> B2 is COMPLEX
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B3
|
||
|
*> \verbatim
|
||
|
*> B3 is REAL
|
||
|
*> On entry, B1, B2 and B3 are elements of the input 2-by-2
|
||
|
*> upper (lower) triangular matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CSU
|
||
|
*> \verbatim
|
||
|
*> CSU is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SNU
|
||
|
*> \verbatim
|
||
|
*> SNU is COMPLEX
|
||
|
*> The desired unitary matrix U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CSV
|
||
|
*> \verbatim
|
||
|
*> CSV is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SNV
|
||
|
*> \verbatim
|
||
|
*> SNV is COMPLEX
|
||
|
*> The desired unitary matrix V.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CSQ
|
||
|
*> \verbatim
|
||
|
*> CSQ is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SNQ
|
||
|
*> \verbatim
|
||
|
*> SNQ is COMPLEX
|
||
|
*> The desired unitary matrix Q.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERauxiliary
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
|
||
|
$ SNV, CSQ, SNQ )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL UPPER
|
||
|
REAL A1, A3, B1, B3, CSQ, CSU, CSV
|
||
|
COMPLEX A2, B2, SNQ, SNU, SNV
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
REAL A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12,
|
||
|
$ AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2, SNL,
|
||
|
$ SNR, UA11R, UA22R, VB11R, VB22R
|
||
|
COMPLEX B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11,
|
||
|
$ VB12, VB21, VB22
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CLARTG, SLASV2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, AIMAG, CMPLX, CONJG, REAL
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
REAL ABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
ABS1( T ) = ABS( REAL( T ) ) + ABS( AIMAG( T ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Input matrices A and B are upper triangular matrices
|
||
|
*
|
||
|
* Form matrix C = A*adj(B) = ( a b )
|
||
|
* ( 0 d )
|
||
|
*
|
||
|
A = A1*B3
|
||
|
D = A3*B1
|
||
|
B = A2*B1 - A1*B2
|
||
|
FB = ABS( B )
|
||
|
*
|
||
|
* Transform complex 2-by-2 matrix C to real matrix by unitary
|
||
|
* diagonal matrix diag(1,D1).
|
||
|
*
|
||
|
D1 = ONE
|
||
|
IF( FB.NE.ZERO )
|
||
|
$ D1 = B / FB
|
||
|
*
|
||
|
* The SVD of real 2 by 2 triangular C
|
||
|
*
|
||
|
* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 )
|
||
|
* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T )
|
||
|
*
|
||
|
CALL SLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL )
|
||
|
*
|
||
|
IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) )
|
||
|
$ THEN
|
||
|
*
|
||
|
* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
|
||
|
* and (1,2) element of |U|**H *|A| and |V|**H *|B|.
|
||
|
*
|
||
|
UA11R = CSL*A1
|
||
|
UA12 = CSL*A2 + D1*SNL*A3
|
||
|
*
|
||
|
VB11R = CSR*B1
|
||
|
VB12 = CSR*B2 + D1*SNR*B3
|
||
|
*
|
||
|
AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 )
|
||
|
AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 )
|
||
|
*
|
||
|
* zero (1,2) elements of U**H *A and V**H *B
|
||
|
*
|
||
|
IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ,
|
||
|
$ R )
|
||
|
ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ,
|
||
|
$ R )
|
||
|
ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 /
|
||
|
$ ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN
|
||
|
CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ,
|
||
|
$ R )
|
||
|
ELSE
|
||
|
CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ,
|
||
|
$ R )
|
||
|
END IF
|
||
|
*
|
||
|
CSU = CSL
|
||
|
SNU = -D1*SNL
|
||
|
CSV = CSR
|
||
|
SNV = -D1*SNR
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
|
||
|
* and (2,2) element of |U|**H *|A| and |V|**H *|B|.
|
||
|
*
|
||
|
UA21 = -CONJG( D1 )*SNL*A1
|
||
|
UA22 = -CONJG( D1 )*SNL*A2 + CSL*A3
|
||
|
*
|
||
|
VB21 = -CONJG( D1 )*SNR*B1
|
||
|
VB22 = -CONJG( D1 )*SNR*B2 + CSR*B3
|
||
|
*
|
||
|
AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 )
|
||
|
AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 )
|
||
|
*
|
||
|
* zero (2,2) elements of U**H *A and V**H *B, and then swap.
|
||
|
*
|
||
|
IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R )
|
||
|
ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R )
|
||
|
ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 /
|
||
|
$ ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN
|
||
|
CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R )
|
||
|
ELSE
|
||
|
CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R )
|
||
|
END IF
|
||
|
*
|
||
|
CSU = SNL
|
||
|
SNU = D1*CSL
|
||
|
CSV = SNR
|
||
|
SNV = D1*CSR
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Input matrices A and B are lower triangular matrices
|
||
|
*
|
||
|
* Form matrix C = A*adj(B) = ( a 0 )
|
||
|
* ( c d )
|
||
|
*
|
||
|
A = A1*B3
|
||
|
D = A3*B1
|
||
|
C = A2*B3 - A3*B2
|
||
|
FC = ABS( C )
|
||
|
*
|
||
|
* Transform complex 2-by-2 matrix C to real matrix by unitary
|
||
|
* diagonal matrix diag(d1,1).
|
||
|
*
|
||
|
D1 = ONE
|
||
|
IF( FC.NE.ZERO )
|
||
|
$ D1 = C / FC
|
||
|
*
|
||
|
* The SVD of real 2 by 2 triangular C
|
||
|
*
|
||
|
* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 )
|
||
|
* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T )
|
||
|
*
|
||
|
CALL SLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL )
|
||
|
*
|
||
|
IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) )
|
||
|
$ THEN
|
||
|
*
|
||
|
* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
|
||
|
* and (2,1) element of |U|**H *|A| and |V|**H *|B|.
|
||
|
*
|
||
|
UA21 = -D1*SNR*A1 + CSR*A2
|
||
|
UA22R = CSR*A3
|
||
|
*
|
||
|
VB21 = -D1*SNL*B1 + CSL*B2
|
||
|
VB22R = CSL*B3
|
||
|
*
|
||
|
AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 )
|
||
|
AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 )
|
||
|
*
|
||
|
* zero (2,1) elements of U**H *A and V**H *B.
|
||
|
*
|
||
|
IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R )
|
||
|
ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R )
|
||
|
ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 /
|
||
|
$ ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN
|
||
|
CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R )
|
||
|
ELSE
|
||
|
CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R )
|
||
|
END IF
|
||
|
*
|
||
|
CSU = CSR
|
||
|
SNU = -CONJG( D1 )*SNR
|
||
|
CSV = CSL
|
||
|
SNV = -CONJG( D1 )*SNL
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
|
||
|
* and (1,1) element of |U|**H *|A| and |V|**H *|B|.
|
||
|
*
|
||
|
UA11 = CSR*A1 + CONJG( D1 )*SNR*A2
|
||
|
UA12 = CONJG( D1 )*SNR*A3
|
||
|
*
|
||
|
VB11 = CSL*B1 + CONJG( D1 )*SNL*B2
|
||
|
VB12 = CONJG( D1 )*SNL*B3
|
||
|
*
|
||
|
AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 )
|
||
|
AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 )
|
||
|
*
|
||
|
* zero (1,1) elements of U**H *A and V**H *B, and then swap.
|
||
|
*
|
||
|
IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( VB12, VB11, CSQ, SNQ, R )
|
||
|
ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN
|
||
|
CALL CLARTG( UA12, UA11, CSQ, SNQ, R )
|
||
|
ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 /
|
||
|
$ ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN
|
||
|
CALL CLARTG( UA12, UA11, CSQ, SNQ, R )
|
||
|
ELSE
|
||
|
CALL CLARTG( VB12, VB11, CSQ, SNQ, R )
|
||
|
END IF
|
||
|
*
|
||
|
CSU = SNR
|
||
|
SNU = CONJG( D1 )*CSR
|
||
|
CSV = SNL
|
||
|
SNV = CONJG( D1 )*CSL
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLAGS2
|
||
|
*
|
||
|
END
|