You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1058 lines
43 KiB
1058 lines
43 KiB
2 years ago
|
*> \brief \b CLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CLARRV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarrv.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarrv.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarrv.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLARRV( N, VL, VU, D, L, PIVMIN,
|
||
|
* ISPLIT, M, DOL, DOU, MINRGP,
|
||
|
* RTOL1, RTOL2, W, WERR, WGAP,
|
||
|
* IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
|
||
|
* WORK, IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER DOL, DOU, INFO, LDZ, M, N
|
||
|
* REAL MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
|
||
|
* $ ISUPPZ( * ), IWORK( * )
|
||
|
* REAL D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
|
||
|
* $ WGAP( * ), WORK( * )
|
||
|
* COMPLEX Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLARRV computes the eigenvectors of the tridiagonal matrix
|
||
|
*> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
|
||
|
*> The input eigenvalues should have been computed by SLARRE.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL
|
||
|
*> Lower bound of the interval that contains the desired
|
||
|
*> eigenvalues. VL < VU. Needed to compute gaps on the left or right
|
||
|
*> end of the extremal eigenvalues in the desired RANGE.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VU
|
||
|
*> \verbatim
|
||
|
*> VU is REAL
|
||
|
*> Upper bound of the interval that contains the desired
|
||
|
*> eigenvalues. VL < VU. Needed to compute gaps on the left or right
|
||
|
*> end of the extremal eigenvalues in the desired RANGE.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (N)
|
||
|
*> On entry, the N diagonal elements of the diagonal matrix D.
|
||
|
*> On exit, D may be overwritten.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] L
|
||
|
*> \verbatim
|
||
|
*> L is REAL array, dimension (N)
|
||
|
*> On entry, the (N-1) subdiagonal elements of the unit
|
||
|
*> bidiagonal matrix L are in elements 1 to N-1 of L
|
||
|
*> (if the matrix is not split.) At the end of each block
|
||
|
*> is stored the corresponding shift as given by SLARRE.
|
||
|
*> On exit, L is overwritten.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] PIVMIN
|
||
|
*> \verbatim
|
||
|
*> PIVMIN is REAL
|
||
|
*> The minimum pivot allowed in the Sturm sequence.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ISPLIT
|
||
|
*> \verbatim
|
||
|
*> ISPLIT is INTEGER array, dimension (N)
|
||
|
*> The splitting points, at which T breaks up into blocks.
|
||
|
*> The first block consists of rows/columns 1 to
|
||
|
*> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
|
||
|
*> through ISPLIT( 2 ), etc.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The total number of input eigenvalues. 0 <= M <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DOL
|
||
|
*> \verbatim
|
||
|
*> DOL is INTEGER
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DOU
|
||
|
*> \verbatim
|
||
|
*> DOU is INTEGER
|
||
|
*> If the user wants to compute only selected eigenvectors from all
|
||
|
*> the eigenvalues supplied, he can specify an index range DOL:DOU.
|
||
|
*> Or else the setting DOL=1, DOU=M should be applied.
|
||
|
*> Note that DOL and DOU refer to the order in which the eigenvalues
|
||
|
*> are stored in W.
|
||
|
*> If the user wants to compute only selected eigenpairs, then
|
||
|
*> the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
|
||
|
*> computed eigenvectors. All other columns of Z are set to zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] MINRGP
|
||
|
*> \verbatim
|
||
|
*> MINRGP is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RTOL1
|
||
|
*> \verbatim
|
||
|
*> RTOL1 is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RTOL2
|
||
|
*> \verbatim
|
||
|
*> RTOL2 is REAL
|
||
|
*> Parameters for bisection.
|
||
|
*> An interval [LEFT,RIGHT] has converged if
|
||
|
*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] W
|
||
|
*> \verbatim
|
||
|
*> W is REAL array, dimension (N)
|
||
|
*> The first M elements of W contain the APPROXIMATE eigenvalues for
|
||
|
*> which eigenvectors are to be computed. The eigenvalues
|
||
|
*> should be grouped by split-off block and ordered from
|
||
|
*> smallest to largest within the block ( The output array
|
||
|
*> W from SLARRE is expected here ). Furthermore, they are with
|
||
|
*> respect to the shift of the corresponding root representation
|
||
|
*> for their block. On exit, W holds the eigenvalues of the
|
||
|
*> UNshifted matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] WERR
|
||
|
*> \verbatim
|
||
|
*> WERR is REAL array, dimension (N)
|
||
|
*> The first M elements contain the semiwidth of the uncertainty
|
||
|
*> interval of the corresponding eigenvalue in W
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] WGAP
|
||
|
*> \verbatim
|
||
|
*> WGAP is REAL array, dimension (N)
|
||
|
*> The separation from the right neighbor eigenvalue in W.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IBLOCK
|
||
|
*> \verbatim
|
||
|
*> IBLOCK is INTEGER array, dimension (N)
|
||
|
*> The indices of the blocks (submatrices) associated with the
|
||
|
*> corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
|
||
|
*> W(i) belongs to the first block from the top, =2 if W(i)
|
||
|
*> belongs to the second block, etc.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] INDEXW
|
||
|
*> \verbatim
|
||
|
*> INDEXW is INTEGER array, dimension (N)
|
||
|
*> The indices of the eigenvalues within each block (submatrix);
|
||
|
*> for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
|
||
|
*> i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] GERS
|
||
|
*> \verbatim
|
||
|
*> GERS is REAL array, dimension (2*N)
|
||
|
*> The N Gerschgorin intervals (the i-th Gerschgorin interval
|
||
|
*> is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
|
||
|
*> be computed from the original UNshifted matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is COMPLEX array, dimension (LDZ, max(1,M) )
|
||
|
*> If INFO = 0, the first M columns of Z contain the
|
||
|
*> orthonormal eigenvectors of the matrix T
|
||
|
*> corresponding to the input eigenvalues, with the i-th
|
||
|
*> column of Z holding the eigenvector associated with W(i).
|
||
|
*> Note: the user must ensure that at least max(1,M) columns are
|
||
|
*> supplied in the array Z.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
||
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ISUPPZ
|
||
|
*> \verbatim
|
||
|
*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
|
||
|
*> The support of the eigenvectors in Z, i.e., the indices
|
||
|
*> indicating the nonzero elements in Z. The I-th eigenvector
|
||
|
*> is nonzero only in elements ISUPPZ( 2*I-1 ) through
|
||
|
*> ISUPPZ( 2*I ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (12*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (7*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*>
|
||
|
*> > 0: A problem occurred in CLARRV.
|
||
|
*> < 0: One of the called subroutines signaled an internal problem.
|
||
|
*> Needs inspection of the corresponding parameter IINFO
|
||
|
*> for further information.
|
||
|
*>
|
||
|
*> =-1: Problem in SLARRB when refining a child's eigenvalues.
|
||
|
*> =-2: Problem in SLARRF when computing the RRR of a child.
|
||
|
*> When a child is inside a tight cluster, it can be difficult
|
||
|
*> to find an RRR. A partial remedy from the user's point of
|
||
|
*> view is to make the parameter MINRGP smaller and recompile.
|
||
|
*> However, as the orthogonality of the computed vectors is
|
||
|
*> proportional to 1/MINRGP, the user should be aware that
|
||
|
*> he might be trading in precision when he decreases MINRGP.
|
||
|
*> =-3: Problem in SLARRB when refining a single eigenvalue
|
||
|
*> after the Rayleigh correction was rejected.
|
||
|
*> = 5: The Rayleigh Quotient Iteration failed to converge to
|
||
|
*> full accuracy in MAXITR steps.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Beresford Parlett, University of California, Berkeley, USA \n
|
||
|
*> Jim Demmel, University of California, Berkeley, USA \n
|
||
|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
|
||
|
*> Osni Marques, LBNL/NERSC, USA \n
|
||
|
*> Christof Voemel, University of California, Berkeley, USA
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLARRV( N, VL, VU, D, L, PIVMIN,
|
||
|
$ ISPLIT, M, DOL, DOU, MINRGP,
|
||
|
$ RTOL1, RTOL2, W, WERR, WGAP,
|
||
|
$ IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
|
||
|
$ WORK, IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER DOL, DOU, INFO, LDZ, M, N
|
||
|
REAL MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
|
||
|
$ ISUPPZ( * ), IWORK( * )
|
||
|
REAL D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
|
||
|
$ WGAP( * ), WORK( * )
|
||
|
COMPLEX Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER MAXITR
|
||
|
PARAMETER ( MAXITR = 10 )
|
||
|
COMPLEX CZERO
|
||
|
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ) )
|
||
|
REAL ZERO, ONE, TWO, THREE, FOUR, HALF
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0,
|
||
|
$ TWO = 2.0E0, THREE = 3.0E0,
|
||
|
$ FOUR = 4.0E0, HALF = 0.5E0)
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
|
||
|
INTEGER DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
|
||
|
$ IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
|
||
|
$ INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
|
||
|
$ ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
|
||
|
$ NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
|
||
|
$ NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
|
||
|
$ OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
|
||
|
$ WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
|
||
|
$ ZUSEDW
|
||
|
INTEGER INDIN1, INDIN2
|
||
|
REAL BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
|
||
|
$ LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
|
||
|
$ RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
|
||
|
$ SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH
|
||
|
EXTERNAL SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CLAR1V, CLASET, CSSCAL, SCOPY, SLARRB,
|
||
|
$ SLARRF
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, REAL, MAX, MIN
|
||
|
INTRINSIC CMPLX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
* ..
|
||
|
|
||
|
INFO = 0
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( (N.LE.0).OR.(M.LE.0) ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* The first N entries of WORK are reserved for the eigenvalues
|
||
|
INDLD = N+1
|
||
|
INDLLD= 2*N+1
|
||
|
INDIN1 = 3*N + 1
|
||
|
INDIN2 = 4*N + 1
|
||
|
INDWRK = 5*N + 1
|
||
|
MINWSIZE = 12 * N
|
||
|
|
||
|
DO 5 I= 1,MINWSIZE
|
||
|
WORK( I ) = ZERO
|
||
|
5 CONTINUE
|
||
|
|
||
|
* IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
|
||
|
* factorization used to compute the FP vector
|
||
|
IINDR = 0
|
||
|
* IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
|
||
|
* layer and the one above.
|
||
|
IINDC1 = N
|
||
|
IINDC2 = 2*N
|
||
|
IINDWK = 3*N + 1
|
||
|
|
||
|
MINIWSIZE = 7 * N
|
||
|
DO 10 I= 1,MINIWSIZE
|
||
|
IWORK( I ) = 0
|
||
|
10 CONTINUE
|
||
|
|
||
|
ZUSEDL = 1
|
||
|
IF(DOL.GT.1) THEN
|
||
|
* Set lower bound for use of Z
|
||
|
ZUSEDL = DOL-1
|
||
|
ENDIF
|
||
|
ZUSEDU = M
|
||
|
IF(DOU.LT.M) THEN
|
||
|
* Set lower bound for use of Z
|
||
|
ZUSEDU = DOU+1
|
||
|
ENDIF
|
||
|
* The width of the part of Z that is used
|
||
|
ZUSEDW = ZUSEDU - ZUSEDL + 1
|
||
|
|
||
|
|
||
|
CALL CLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
|
||
|
$ Z(1,ZUSEDL), LDZ )
|
||
|
|
||
|
EPS = SLAMCH( 'Precision' )
|
||
|
RQTOL = TWO * EPS
|
||
|
*
|
||
|
* Set expert flags for standard code.
|
||
|
TRYRQC = .TRUE.
|
||
|
|
||
|
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
|
||
|
ELSE
|
||
|
* Only selected eigenpairs are computed. Since the other evalues
|
||
|
* are not refined by RQ iteration, bisection has to compute to full
|
||
|
* accuracy.
|
||
|
RTOL1 = FOUR * EPS
|
||
|
RTOL2 = FOUR * EPS
|
||
|
ENDIF
|
||
|
|
||
|
* The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
|
||
|
* desired eigenvalues. The support of the nonzero eigenvector
|
||
|
* entries is contained in the interval IBEGIN:IEND.
|
||
|
* Remark that if k eigenpairs are desired, then the eigenvectors
|
||
|
* are stored in k contiguous columns of Z.
|
||
|
|
||
|
* DONE is the number of eigenvectors already computed
|
||
|
DONE = 0
|
||
|
IBEGIN = 1
|
||
|
WBEGIN = 1
|
||
|
DO 170 JBLK = 1, IBLOCK( M )
|
||
|
IEND = ISPLIT( JBLK )
|
||
|
SIGMA = L( IEND )
|
||
|
* Find the eigenvectors of the submatrix indexed IBEGIN
|
||
|
* through IEND.
|
||
|
WEND = WBEGIN - 1
|
||
|
15 CONTINUE
|
||
|
IF( WEND.LT.M ) THEN
|
||
|
IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
|
||
|
WEND = WEND + 1
|
||
|
GO TO 15
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( WEND.LT.WBEGIN ) THEN
|
||
|
IBEGIN = IEND + 1
|
||
|
GO TO 170
|
||
|
ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
|
||
|
IBEGIN = IEND + 1
|
||
|
WBEGIN = WEND + 1
|
||
|
GO TO 170
|
||
|
END IF
|
||
|
|
||
|
* Find local spectral diameter of the block
|
||
|
GL = GERS( 2*IBEGIN-1 )
|
||
|
GU = GERS( 2*IBEGIN )
|
||
|
DO 20 I = IBEGIN+1 , IEND
|
||
|
GL = MIN( GERS( 2*I-1 ), GL )
|
||
|
GU = MAX( GERS( 2*I ), GU )
|
||
|
20 CONTINUE
|
||
|
SPDIAM = GU - GL
|
||
|
|
||
|
* OLDIEN is the last index of the previous block
|
||
|
OLDIEN = IBEGIN - 1
|
||
|
* Calculate the size of the current block
|
||
|
IN = IEND - IBEGIN + 1
|
||
|
* The number of eigenvalues in the current block
|
||
|
IM = WEND - WBEGIN + 1
|
||
|
|
||
|
* This is for a 1x1 block
|
||
|
IF( IBEGIN.EQ.IEND ) THEN
|
||
|
DONE = DONE+1
|
||
|
Z( IBEGIN, WBEGIN ) = CMPLX( ONE, ZERO )
|
||
|
ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
|
||
|
ISUPPZ( 2*WBEGIN ) = IBEGIN
|
||
|
W( WBEGIN ) = W( WBEGIN ) + SIGMA
|
||
|
WORK( WBEGIN ) = W( WBEGIN )
|
||
|
IBEGIN = IEND + 1
|
||
|
WBEGIN = WBEGIN + 1
|
||
|
GO TO 170
|
||
|
END IF
|
||
|
|
||
|
* The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
|
||
|
* Note that these can be approximations, in this case, the corresp.
|
||
|
* entries of WERR give the size of the uncertainty interval.
|
||
|
* The eigenvalue approximations will be refined when necessary as
|
||
|
* high relative accuracy is required for the computation of the
|
||
|
* corresponding eigenvectors.
|
||
|
CALL SCOPY( IM, W( WBEGIN ), 1,
|
||
|
$ WORK( WBEGIN ), 1 )
|
||
|
|
||
|
* We store in W the eigenvalue approximations w.r.t. the original
|
||
|
* matrix T.
|
||
|
DO 30 I=1,IM
|
||
|
W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
|
||
|
30 CONTINUE
|
||
|
|
||
|
|
||
|
* NDEPTH is the current depth of the representation tree
|
||
|
NDEPTH = 0
|
||
|
* PARITY is either 1 or 0
|
||
|
PARITY = 1
|
||
|
* NCLUS is the number of clusters for the next level of the
|
||
|
* representation tree, we start with NCLUS = 1 for the root
|
||
|
NCLUS = 1
|
||
|
IWORK( IINDC1+1 ) = 1
|
||
|
IWORK( IINDC1+2 ) = IM
|
||
|
|
||
|
* IDONE is the number of eigenvectors already computed in the current
|
||
|
* block
|
||
|
IDONE = 0
|
||
|
* loop while( IDONE.LT.IM )
|
||
|
* generate the representation tree for the current block and
|
||
|
* compute the eigenvectors
|
||
|
40 CONTINUE
|
||
|
IF( IDONE.LT.IM ) THEN
|
||
|
* This is a crude protection against infinitely deep trees
|
||
|
IF( NDEPTH.GT.M ) THEN
|
||
|
INFO = -2
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
* breadth first processing of the current level of the representation
|
||
|
* tree: OLDNCL = number of clusters on current level
|
||
|
OLDNCL = NCLUS
|
||
|
* reset NCLUS to count the number of child clusters
|
||
|
NCLUS = 0
|
||
|
*
|
||
|
PARITY = 1 - PARITY
|
||
|
IF( PARITY.EQ.0 ) THEN
|
||
|
OLDCLS = IINDC1
|
||
|
NEWCLS = IINDC2
|
||
|
ELSE
|
||
|
OLDCLS = IINDC2
|
||
|
NEWCLS = IINDC1
|
||
|
END IF
|
||
|
* Process the clusters on the current level
|
||
|
DO 150 I = 1, OLDNCL
|
||
|
J = OLDCLS + 2*I
|
||
|
* OLDFST, OLDLST = first, last index of current cluster.
|
||
|
* cluster indices start with 1 and are relative
|
||
|
* to WBEGIN when accessing W, WGAP, WERR, Z
|
||
|
OLDFST = IWORK( J-1 )
|
||
|
OLDLST = IWORK( J )
|
||
|
IF( NDEPTH.GT.0 ) THEN
|
||
|
* Retrieve relatively robust representation (RRR) of cluster
|
||
|
* that has been computed at the previous level
|
||
|
* The RRR is stored in Z and overwritten once the eigenvectors
|
||
|
* have been computed or when the cluster is refined
|
||
|
|
||
|
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
|
||
|
* Get representation from location of the leftmost evalue
|
||
|
* of the cluster
|
||
|
J = WBEGIN + OLDFST - 1
|
||
|
ELSE
|
||
|
IF(WBEGIN+OLDFST-1.LT.DOL) THEN
|
||
|
* Get representation from the left end of Z array
|
||
|
J = DOL - 1
|
||
|
ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
|
||
|
* Get representation from the right end of Z array
|
||
|
J = DOU
|
||
|
ELSE
|
||
|
J = WBEGIN + OLDFST - 1
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
DO 45 K = 1, IN - 1
|
||
|
D( IBEGIN+K-1 ) = REAL( Z( IBEGIN+K-1,
|
||
|
$ J ) )
|
||
|
L( IBEGIN+K-1 ) = REAL( Z( IBEGIN+K-1,
|
||
|
$ J+1 ) )
|
||
|
45 CONTINUE
|
||
|
D( IEND ) = REAL( Z( IEND, J ) )
|
||
|
SIGMA = REAL( Z( IEND, J+1 ) )
|
||
|
|
||
|
* Set the corresponding entries in Z to zero
|
||
|
CALL CLASET( 'Full', IN, 2, CZERO, CZERO,
|
||
|
$ Z( IBEGIN, J), LDZ )
|
||
|
END IF
|
||
|
|
||
|
* Compute DL and DLL of current RRR
|
||
|
DO 50 J = IBEGIN, IEND-1
|
||
|
TMP = D( J )*L( J )
|
||
|
WORK( INDLD-1+J ) = TMP
|
||
|
WORK( INDLLD-1+J ) = TMP*L( J )
|
||
|
50 CONTINUE
|
||
|
|
||
|
IF( NDEPTH.GT.0 ) THEN
|
||
|
* P and Q are index of the first and last eigenvalue to compute
|
||
|
* within the current block
|
||
|
P = INDEXW( WBEGIN-1+OLDFST )
|
||
|
Q = INDEXW( WBEGIN-1+OLDLST )
|
||
|
* Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
|
||
|
* through the Q-OFFSET elements of these arrays are to be used.
|
||
|
* OFFSET = P-OLDFST
|
||
|
OFFSET = INDEXW( WBEGIN ) - 1
|
||
|
* perform limited bisection (if necessary) to get approximate
|
||
|
* eigenvalues to the precision needed.
|
||
|
CALL SLARRB( IN, D( IBEGIN ),
|
||
|
$ WORK(INDLLD+IBEGIN-1),
|
||
|
$ P, Q, RTOL1, RTOL2, OFFSET,
|
||
|
$ WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
|
||
|
$ WORK( INDWRK ), IWORK( IINDWK ),
|
||
|
$ PIVMIN, SPDIAM, IN, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = -1
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
* We also recompute the extremal gaps. W holds all eigenvalues
|
||
|
* of the unshifted matrix and must be used for computation
|
||
|
* of WGAP, the entries of WORK might stem from RRRs with
|
||
|
* different shifts. The gaps from WBEGIN-1+OLDFST to
|
||
|
* WBEGIN-1+OLDLST are correctly computed in SLARRB.
|
||
|
* However, we only allow the gaps to become greater since
|
||
|
* this is what should happen when we decrease WERR
|
||
|
IF( OLDFST.GT.1) THEN
|
||
|
WGAP( WBEGIN+OLDFST-2 ) =
|
||
|
$ MAX(WGAP(WBEGIN+OLDFST-2),
|
||
|
$ W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
|
||
|
$ - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
|
||
|
ENDIF
|
||
|
IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
|
||
|
WGAP( WBEGIN+OLDLST-1 ) =
|
||
|
$ MAX(WGAP(WBEGIN+OLDLST-1),
|
||
|
$ W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
|
||
|
$ - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
|
||
|
ENDIF
|
||
|
* Each time the eigenvalues in WORK get refined, we store
|
||
|
* the newly found approximation with all shifts applied in W
|
||
|
DO 53 J=OLDFST,OLDLST
|
||
|
W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
|
||
|
53 CONTINUE
|
||
|
END IF
|
||
|
|
||
|
* Process the current node.
|
||
|
NEWFST = OLDFST
|
||
|
DO 140 J = OLDFST, OLDLST
|
||
|
IF( J.EQ.OLDLST ) THEN
|
||
|
* we are at the right end of the cluster, this is also the
|
||
|
* boundary of the child cluster
|
||
|
NEWLST = J
|
||
|
ELSE IF ( WGAP( WBEGIN + J -1).GE.
|
||
|
$ MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
|
||
|
* the right relative gap is big enough, the child cluster
|
||
|
* (NEWFST,..,NEWLST) is well separated from the following
|
||
|
NEWLST = J
|
||
|
ELSE
|
||
|
* inside a child cluster, the relative gap is not
|
||
|
* big enough.
|
||
|
GOTO 140
|
||
|
END IF
|
||
|
|
||
|
* Compute size of child cluster found
|
||
|
NEWSIZ = NEWLST - NEWFST + 1
|
||
|
|
||
|
* NEWFTT is the place in Z where the new RRR or the computed
|
||
|
* eigenvector is to be stored
|
||
|
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
|
||
|
* Store representation at location of the leftmost evalue
|
||
|
* of the cluster
|
||
|
NEWFTT = WBEGIN + NEWFST - 1
|
||
|
ELSE
|
||
|
IF(WBEGIN+NEWFST-1.LT.DOL) THEN
|
||
|
* Store representation at the left end of Z array
|
||
|
NEWFTT = DOL - 1
|
||
|
ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
|
||
|
* Store representation at the right end of Z array
|
||
|
NEWFTT = DOU
|
||
|
ELSE
|
||
|
NEWFTT = WBEGIN + NEWFST - 1
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
|
||
|
IF( NEWSIZ.GT.1) THEN
|
||
|
*
|
||
|
* Current child is not a singleton but a cluster.
|
||
|
* Compute and store new representation of child.
|
||
|
*
|
||
|
*
|
||
|
* Compute left and right cluster gap.
|
||
|
*
|
||
|
* LGAP and RGAP are not computed from WORK because
|
||
|
* the eigenvalue approximations may stem from RRRs
|
||
|
* different shifts. However, W hold all eigenvalues
|
||
|
* of the unshifted matrix. Still, the entries in WGAP
|
||
|
* have to be computed from WORK since the entries
|
||
|
* in W might be of the same order so that gaps are not
|
||
|
* exhibited correctly for very close eigenvalues.
|
||
|
IF( NEWFST.EQ.1 ) THEN
|
||
|
LGAP = MAX( ZERO,
|
||
|
$ W(WBEGIN)-WERR(WBEGIN) - VL )
|
||
|
ELSE
|
||
|
LGAP = WGAP( WBEGIN+NEWFST-2 )
|
||
|
ENDIF
|
||
|
RGAP = WGAP( WBEGIN+NEWLST-1 )
|
||
|
*
|
||
|
* Compute left- and rightmost eigenvalue of child
|
||
|
* to high precision in order to shift as close
|
||
|
* as possible and obtain as large relative gaps
|
||
|
* as possible
|
||
|
*
|
||
|
DO 55 K =1,2
|
||
|
IF(K.EQ.1) THEN
|
||
|
P = INDEXW( WBEGIN-1+NEWFST )
|
||
|
ELSE
|
||
|
P = INDEXW( WBEGIN-1+NEWLST )
|
||
|
ENDIF
|
||
|
OFFSET = INDEXW( WBEGIN ) - 1
|
||
|
CALL SLARRB( IN, D(IBEGIN),
|
||
|
$ WORK( INDLLD+IBEGIN-1 ),P,P,
|
||
|
$ RQTOL, RQTOL, OFFSET,
|
||
|
$ WORK(WBEGIN),WGAP(WBEGIN),
|
||
|
$ WERR(WBEGIN),WORK( INDWRK ),
|
||
|
$ IWORK( IINDWK ), PIVMIN, SPDIAM,
|
||
|
$ IN, IINFO )
|
||
|
55 CONTINUE
|
||
|
*
|
||
|
IF((WBEGIN+NEWLST-1.LT.DOL).OR.
|
||
|
$ (WBEGIN+NEWFST-1.GT.DOU)) THEN
|
||
|
* if the cluster contains no desired eigenvalues
|
||
|
* skip the computation of that branch of the rep. tree
|
||
|
*
|
||
|
* We could skip before the refinement of the extremal
|
||
|
* eigenvalues of the child, but then the representation
|
||
|
* tree could be different from the one when nothing is
|
||
|
* skipped. For this reason we skip at this place.
|
||
|
IDONE = IDONE + NEWLST - NEWFST + 1
|
||
|
GOTO 139
|
||
|
ENDIF
|
||
|
*
|
||
|
* Compute RRR of child cluster.
|
||
|
* Note that the new RRR is stored in Z
|
||
|
*
|
||
|
* SLARRF needs LWORK = 2*N
|
||
|
CALL SLARRF( IN, D( IBEGIN ), L( IBEGIN ),
|
||
|
$ WORK(INDLD+IBEGIN-1),
|
||
|
$ NEWFST, NEWLST, WORK(WBEGIN),
|
||
|
$ WGAP(WBEGIN), WERR(WBEGIN),
|
||
|
$ SPDIAM, LGAP, RGAP, PIVMIN, TAU,
|
||
|
$ WORK( INDIN1 ), WORK( INDIN2 ),
|
||
|
$ WORK( INDWRK ), IINFO )
|
||
|
* In the complex case, SLARRF cannot write
|
||
|
* the new RRR directly into Z and needs an intermediate
|
||
|
* workspace
|
||
|
DO 56 K = 1, IN-1
|
||
|
Z( IBEGIN+K-1, NEWFTT ) =
|
||
|
$ CMPLX( WORK( INDIN1+K-1 ), ZERO )
|
||
|
Z( IBEGIN+K-1, NEWFTT+1 ) =
|
||
|
$ CMPLX( WORK( INDIN2+K-1 ), ZERO )
|
||
|
56 CONTINUE
|
||
|
Z( IEND, NEWFTT ) =
|
||
|
$ CMPLX( WORK( INDIN1+IN-1 ), ZERO )
|
||
|
IF( IINFO.EQ.0 ) THEN
|
||
|
* a new RRR for the cluster was found by SLARRF
|
||
|
* update shift and store it
|
||
|
SSIGMA = SIGMA + TAU
|
||
|
Z( IEND, NEWFTT+1 ) = CMPLX( SSIGMA, ZERO )
|
||
|
* WORK() are the midpoints and WERR() the semi-width
|
||
|
* Note that the entries in W are unchanged.
|
||
|
DO 116 K = NEWFST, NEWLST
|
||
|
FUDGE =
|
||
|
$ THREE*EPS*ABS(WORK(WBEGIN+K-1))
|
||
|
WORK( WBEGIN + K - 1 ) =
|
||
|
$ WORK( WBEGIN + K - 1) - TAU
|
||
|
FUDGE = FUDGE +
|
||
|
$ FOUR*EPS*ABS(WORK(WBEGIN+K-1))
|
||
|
* Fudge errors
|
||
|
WERR( WBEGIN + K - 1 ) =
|
||
|
$ WERR( WBEGIN + K - 1 ) + FUDGE
|
||
|
* Gaps are not fudged. Provided that WERR is small
|
||
|
* when eigenvalues are close, a zero gap indicates
|
||
|
* that a new representation is needed for resolving
|
||
|
* the cluster. A fudge could lead to a wrong decision
|
||
|
* of judging eigenvalues 'separated' which in
|
||
|
* reality are not. This could have a negative impact
|
||
|
* on the orthogonality of the computed eigenvectors.
|
||
|
116 CONTINUE
|
||
|
|
||
|
NCLUS = NCLUS + 1
|
||
|
K = NEWCLS + 2*NCLUS
|
||
|
IWORK( K-1 ) = NEWFST
|
||
|
IWORK( K ) = NEWLST
|
||
|
ELSE
|
||
|
INFO = -2
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute eigenvector of singleton
|
||
|
*
|
||
|
ITER = 0
|
||
|
*
|
||
|
TOL = FOUR * LOG(REAL(IN)) * EPS
|
||
|
*
|
||
|
K = NEWFST
|
||
|
WINDEX = WBEGIN + K - 1
|
||
|
WINDMN = MAX(WINDEX - 1,1)
|
||
|
WINDPL = MIN(WINDEX + 1,M)
|
||
|
LAMBDA = WORK( WINDEX )
|
||
|
DONE = DONE + 1
|
||
|
* Check if eigenvector computation is to be skipped
|
||
|
IF((WINDEX.LT.DOL).OR.
|
||
|
$ (WINDEX.GT.DOU)) THEN
|
||
|
ESKIP = .TRUE.
|
||
|
GOTO 125
|
||
|
ELSE
|
||
|
ESKIP = .FALSE.
|
||
|
ENDIF
|
||
|
LEFT = WORK( WINDEX ) - WERR( WINDEX )
|
||
|
RIGHT = WORK( WINDEX ) + WERR( WINDEX )
|
||
|
INDEIG = INDEXW( WINDEX )
|
||
|
* Note that since we compute the eigenpairs for a child,
|
||
|
* all eigenvalue approximations are w.r.t the same shift.
|
||
|
* In this case, the entries in WORK should be used for
|
||
|
* computing the gaps since they exhibit even very small
|
||
|
* differences in the eigenvalues, as opposed to the
|
||
|
* entries in W which might "look" the same.
|
||
|
|
||
|
IF( K .EQ. 1) THEN
|
||
|
* In the case RANGE='I' and with not much initial
|
||
|
* accuracy in LAMBDA and VL, the formula
|
||
|
* LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
|
||
|
* can lead to an overestimation of the left gap and
|
||
|
* thus to inadequately early RQI 'convergence'.
|
||
|
* Prevent this by forcing a small left gap.
|
||
|
LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
|
||
|
ELSE
|
||
|
LGAP = WGAP(WINDMN)
|
||
|
ENDIF
|
||
|
IF( K .EQ. IM) THEN
|
||
|
* In the case RANGE='I' and with not much initial
|
||
|
* accuracy in LAMBDA and VU, the formula
|
||
|
* can lead to an overestimation of the right gap and
|
||
|
* thus to inadequately early RQI 'convergence'.
|
||
|
* Prevent this by forcing a small right gap.
|
||
|
RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
|
||
|
ELSE
|
||
|
RGAP = WGAP(WINDEX)
|
||
|
ENDIF
|
||
|
GAP = MIN( LGAP, RGAP )
|
||
|
IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
|
||
|
* The eigenvector support can become wrong
|
||
|
* because significant entries could be cut off due to a
|
||
|
* large GAPTOL parameter in LAR1V. Prevent this.
|
||
|
GAPTOL = ZERO
|
||
|
ELSE
|
||
|
GAPTOL = GAP * EPS
|
||
|
ENDIF
|
||
|
ISUPMN = IN
|
||
|
ISUPMX = 1
|
||
|
* Update WGAP so that it holds the minimum gap
|
||
|
* to the left or the right. This is crucial in the
|
||
|
* case where bisection is used to ensure that the
|
||
|
* eigenvalue is refined up to the required precision.
|
||
|
* The correct value is restored afterwards.
|
||
|
SAVGAP = WGAP(WINDEX)
|
||
|
WGAP(WINDEX) = GAP
|
||
|
* We want to use the Rayleigh Quotient Correction
|
||
|
* as often as possible since it converges quadratically
|
||
|
* when we are close enough to the desired eigenvalue.
|
||
|
* However, the Rayleigh Quotient can have the wrong sign
|
||
|
* and lead us away from the desired eigenvalue. In this
|
||
|
* case, the best we can do is to use bisection.
|
||
|
USEDBS = .FALSE.
|
||
|
USEDRQ = .FALSE.
|
||
|
* Bisection is initially turned off unless it is forced
|
||
|
NEEDBS = .NOT.TRYRQC
|
||
|
120 CONTINUE
|
||
|
* Check if bisection should be used to refine eigenvalue
|
||
|
IF(NEEDBS) THEN
|
||
|
* Take the bisection as new iterate
|
||
|
USEDBS = .TRUE.
|
||
|
ITMP1 = IWORK( IINDR+WINDEX )
|
||
|
OFFSET = INDEXW( WBEGIN ) - 1
|
||
|
CALL SLARRB( IN, D(IBEGIN),
|
||
|
$ WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
|
||
|
$ ZERO, TWO*EPS, OFFSET,
|
||
|
$ WORK(WBEGIN),WGAP(WBEGIN),
|
||
|
$ WERR(WBEGIN),WORK( INDWRK ),
|
||
|
$ IWORK( IINDWK ), PIVMIN, SPDIAM,
|
||
|
$ ITMP1, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = -3
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
LAMBDA = WORK( WINDEX )
|
||
|
* Reset twist index from inaccurate LAMBDA to
|
||
|
* force computation of true MINGMA
|
||
|
IWORK( IINDR+WINDEX ) = 0
|
||
|
ENDIF
|
||
|
* Given LAMBDA, compute the eigenvector.
|
||
|
CALL CLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
|
||
|
$ L( IBEGIN ), WORK(INDLD+IBEGIN-1),
|
||
|
$ WORK(INDLLD+IBEGIN-1),
|
||
|
$ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
|
||
|
$ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
|
||
|
$ IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
|
||
|
$ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
|
||
|
IF(ITER .EQ. 0) THEN
|
||
|
BSTRES = RESID
|
||
|
BSTW = LAMBDA
|
||
|
ELSEIF(RESID.LT.BSTRES) THEN
|
||
|
BSTRES = RESID
|
||
|
BSTW = LAMBDA
|
||
|
ENDIF
|
||
|
ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
|
||
|
ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
|
||
|
ITER = ITER + 1
|
||
|
|
||
|
* sin alpha <= |resid|/gap
|
||
|
* Note that both the residual and the gap are
|
||
|
* proportional to the matrix, so ||T|| doesn't play
|
||
|
* a role in the quotient
|
||
|
|
||
|
*
|
||
|
* Convergence test for Rayleigh-Quotient iteration
|
||
|
* (omitted when Bisection has been used)
|
||
|
*
|
||
|
IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
|
||
|
$ RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
|
||
|
$ THEN
|
||
|
* We need to check that the RQCORR update doesn't
|
||
|
* move the eigenvalue away from the desired one and
|
||
|
* towards a neighbor. -> protection with bisection
|
||
|
IF(INDEIG.LE.NEGCNT) THEN
|
||
|
* The wanted eigenvalue lies to the left
|
||
|
SGNDEF = -ONE
|
||
|
ELSE
|
||
|
* The wanted eigenvalue lies to the right
|
||
|
SGNDEF = ONE
|
||
|
ENDIF
|
||
|
* We only use the RQCORR if it improves the
|
||
|
* the iterate reasonably.
|
||
|
IF( ( RQCORR*SGNDEF.GE.ZERO )
|
||
|
$ .AND.( LAMBDA + RQCORR.LE. RIGHT)
|
||
|
$ .AND.( LAMBDA + RQCORR.GE. LEFT)
|
||
|
$ ) THEN
|
||
|
USEDRQ = .TRUE.
|
||
|
* Store new midpoint of bisection interval in WORK
|
||
|
IF(SGNDEF.EQ.ONE) THEN
|
||
|
* The current LAMBDA is on the left of the true
|
||
|
* eigenvalue
|
||
|
LEFT = LAMBDA
|
||
|
* We prefer to assume that the error estimate
|
||
|
* is correct. We could make the interval not
|
||
|
* as a bracket but to be modified if the RQCORR
|
||
|
* chooses to. In this case, the RIGHT side should
|
||
|
* be modified as follows:
|
||
|
* RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
|
||
|
ELSE
|
||
|
* The current LAMBDA is on the right of the true
|
||
|
* eigenvalue
|
||
|
RIGHT = LAMBDA
|
||
|
* See comment about assuming the error estimate is
|
||
|
* correct above.
|
||
|
* LEFT = MIN(LEFT, LAMBDA + RQCORR)
|
||
|
ENDIF
|
||
|
WORK( WINDEX ) =
|
||
|
$ HALF * (RIGHT + LEFT)
|
||
|
* Take RQCORR since it has the correct sign and
|
||
|
* improves the iterate reasonably
|
||
|
LAMBDA = LAMBDA + RQCORR
|
||
|
* Update width of error interval
|
||
|
WERR( WINDEX ) =
|
||
|
$ HALF * (RIGHT-LEFT)
|
||
|
ELSE
|
||
|
NEEDBS = .TRUE.
|
||
|
ENDIF
|
||
|
IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
|
||
|
* The eigenvalue is computed to bisection accuracy
|
||
|
* compute eigenvector and stop
|
||
|
USEDBS = .TRUE.
|
||
|
GOTO 120
|
||
|
ELSEIF( ITER.LT.MAXITR ) THEN
|
||
|
GOTO 120
|
||
|
ELSEIF( ITER.EQ.MAXITR ) THEN
|
||
|
NEEDBS = .TRUE.
|
||
|
GOTO 120
|
||
|
ELSE
|
||
|
INFO = 5
|
||
|
RETURN
|
||
|
END IF
|
||
|
ELSE
|
||
|
STP2II = .FALSE.
|
||
|
IF(USEDRQ .AND. USEDBS .AND.
|
||
|
$ BSTRES.LE.RESID) THEN
|
||
|
LAMBDA = BSTW
|
||
|
STP2II = .TRUE.
|
||
|
ENDIF
|
||
|
IF (STP2II) THEN
|
||
|
* improve error angle by second step
|
||
|
CALL CLAR1V( IN, 1, IN, LAMBDA,
|
||
|
$ D( IBEGIN ), L( IBEGIN ),
|
||
|
$ WORK(INDLD+IBEGIN-1),
|
||
|
$ WORK(INDLLD+IBEGIN-1),
|
||
|
$ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
|
||
|
$ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
|
||
|
$ IWORK( IINDR+WINDEX ),
|
||
|
$ ISUPPZ( 2*WINDEX-1 ),
|
||
|
$ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
|
||
|
ENDIF
|
||
|
WORK( WINDEX ) = LAMBDA
|
||
|
END IF
|
||
|
*
|
||
|
* Compute FP-vector support w.r.t. whole matrix
|
||
|
*
|
||
|
ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
|
||
|
ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
|
||
|
ZFROM = ISUPPZ( 2*WINDEX-1 )
|
||
|
ZTO = ISUPPZ( 2*WINDEX )
|
||
|
ISUPMN = ISUPMN + OLDIEN
|
||
|
ISUPMX = ISUPMX + OLDIEN
|
||
|
* Ensure vector is ok if support in the RQI has changed
|
||
|
IF(ISUPMN.LT.ZFROM) THEN
|
||
|
DO 122 II = ISUPMN,ZFROM-1
|
||
|
Z( II, WINDEX ) = ZERO
|
||
|
122 CONTINUE
|
||
|
ENDIF
|
||
|
IF(ISUPMX.GT.ZTO) THEN
|
||
|
DO 123 II = ZTO+1,ISUPMX
|
||
|
Z( II, WINDEX ) = ZERO
|
||
|
123 CONTINUE
|
||
|
ENDIF
|
||
|
CALL CSSCAL( ZTO-ZFROM+1, NRMINV,
|
||
|
$ Z( ZFROM, WINDEX ), 1 )
|
||
|
125 CONTINUE
|
||
|
* Update W
|
||
|
W( WINDEX ) = LAMBDA+SIGMA
|
||
|
* Recompute the gaps on the left and right
|
||
|
* But only allow them to become larger and not
|
||
|
* smaller (which can only happen through "bad"
|
||
|
* cancellation and doesn't reflect the theory
|
||
|
* where the initial gaps are underestimated due
|
||
|
* to WERR being too crude.)
|
||
|
IF(.NOT.ESKIP) THEN
|
||
|
IF( K.GT.1) THEN
|
||
|
WGAP( WINDMN ) = MAX( WGAP(WINDMN),
|
||
|
$ W(WINDEX)-WERR(WINDEX)
|
||
|
$ - W(WINDMN)-WERR(WINDMN) )
|
||
|
ENDIF
|
||
|
IF( WINDEX.LT.WEND ) THEN
|
||
|
WGAP( WINDEX ) = MAX( SAVGAP,
|
||
|
$ W( WINDPL )-WERR( WINDPL )
|
||
|
$ - W( WINDEX )-WERR( WINDEX) )
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
IDONE = IDONE + 1
|
||
|
ENDIF
|
||
|
* here ends the code for the current child
|
||
|
*
|
||
|
139 CONTINUE
|
||
|
* Proceed to any remaining child nodes
|
||
|
NEWFST = J + 1
|
||
|
140 CONTINUE
|
||
|
150 CONTINUE
|
||
|
NDEPTH = NDEPTH + 1
|
||
|
GO TO 40
|
||
|
END IF
|
||
|
IBEGIN = IEND + 1
|
||
|
WBEGIN = WEND + 1
|
||
|
170 CONTINUE
|
||
|
*
|
||
|
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLARRV
|
||
|
*
|
||
|
END
|