You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
402 lines
12 KiB
402 lines
12 KiB
2 years ago
|
*> \brief \b CSPTRI
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CSPTRI + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptri.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptri.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptri.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER INFO, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* COMPLEX AP( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CSPTRI computes the inverse of a complex symmetric indefinite matrix
|
||
|
*> A in packed storage using the factorization A = U*D*U**T or
|
||
|
*> A = L*D*L**T computed by CSPTRF.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the details of the factorization are stored
|
||
|
*> as an upper or lower triangular matrix.
|
||
|
*> = 'U': Upper triangular, form is A = U*D*U**T;
|
||
|
*> = 'L': Lower triangular, form is A = L*D*L**T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] AP
|
||
|
*> \verbatim
|
||
|
*> AP is COMPLEX array, dimension (N*(N+1)/2)
|
||
|
*> On entry, the block diagonal matrix D and the multipliers
|
||
|
*> used to obtain the factor U or L as computed by CSPTRF,
|
||
|
*> stored as a packed triangular matrix.
|
||
|
*>
|
||
|
*> On exit, if INFO = 0, the (symmetric) inverse of the original
|
||
|
*> matrix, stored as a packed triangular matrix. The j-th column
|
||
|
*> of inv(A) is stored in the array AP as follows:
|
||
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
|
||
|
*> if UPLO = 'L',
|
||
|
*> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> Details of the interchanges and the block structure of D
|
||
|
*> as determined by CSPTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
|
||
|
*> inverse could not be computed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER INFO, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
COMPLEX AP( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ONE, ZERO
|
||
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
|
||
|
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL UPPER
|
||
|
INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
|
||
|
COMPLEX AK, AKKP1, AKP1, D, T, TEMP
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
COMPLEX CDOTU
|
||
|
EXTERNAL LSAME, CDOTU
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CCOPY, CSPMV, CSWAP, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CSPTRI', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Check that the diagonal matrix D is nonsingular.
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Upper triangular storage: examine D from bottom to top
|
||
|
*
|
||
|
KP = N*( N+1 ) / 2
|
||
|
DO 10 INFO = N, 1, -1
|
||
|
IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
|
||
|
$ RETURN
|
||
|
KP = KP - INFO
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Lower triangular storage: examine D from top to bottom.
|
||
|
*
|
||
|
KP = 1
|
||
|
DO 20 INFO = 1, N
|
||
|
IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
|
||
|
$ RETURN
|
||
|
KP = KP + N - INFO + 1
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
INFO = 0
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Compute inv(A) from the factorization A = U*D*U**T.
|
||
|
*
|
||
|
* K is the main loop index, increasing from 1 to N in steps of
|
||
|
* 1 or 2, depending on the size of the diagonal blocks.
|
||
|
*
|
||
|
K = 1
|
||
|
KC = 1
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* If K > N, exit from loop.
|
||
|
*
|
||
|
IF( K.GT.N )
|
||
|
$ GO TO 50
|
||
|
*
|
||
|
KCNEXT = KC + K
|
||
|
IF( IPIV( K ).GT.0 ) THEN
|
||
|
*
|
||
|
* 1 x 1 diagonal block
|
||
|
*
|
||
|
* Invert the diagonal block.
|
||
|
*
|
||
|
AP( KC+K-1 ) = ONE / AP( KC+K-1 )
|
||
|
*
|
||
|
* Compute column K of the inverse.
|
||
|
*
|
||
|
IF( K.GT.1 ) THEN
|
||
|
CALL CCOPY( K-1, AP( KC ), 1, WORK, 1 )
|
||
|
CALL CSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
|
||
|
$ 1 )
|
||
|
AP( KC+K-1 ) = AP( KC+K-1 ) -
|
||
|
$ CDOTU( K-1, WORK, 1, AP( KC ), 1 )
|
||
|
END IF
|
||
|
KSTEP = 1
|
||
|
ELSE
|
||
|
*
|
||
|
* 2 x 2 diagonal block
|
||
|
*
|
||
|
* Invert the diagonal block.
|
||
|
*
|
||
|
T = AP( KCNEXT+K-1 )
|
||
|
AK = AP( KC+K-1 ) / T
|
||
|
AKP1 = AP( KCNEXT+K ) / T
|
||
|
AKKP1 = AP( KCNEXT+K-1 ) / T
|
||
|
D = T*( AK*AKP1-ONE )
|
||
|
AP( KC+K-1 ) = AKP1 / D
|
||
|
AP( KCNEXT+K ) = AK / D
|
||
|
AP( KCNEXT+K-1 ) = -AKKP1 / D
|
||
|
*
|
||
|
* Compute columns K and K+1 of the inverse.
|
||
|
*
|
||
|
IF( K.GT.1 ) THEN
|
||
|
CALL CCOPY( K-1, AP( KC ), 1, WORK, 1 )
|
||
|
CALL CSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
|
||
|
$ 1 )
|
||
|
AP( KC+K-1 ) = AP( KC+K-1 ) -
|
||
|
$ CDOTU( K-1, WORK, 1, AP( KC ), 1 )
|
||
|
AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
|
||
|
$ CDOTU( K-1, AP( KC ), 1, AP( KCNEXT ),
|
||
|
$ 1 )
|
||
|
CALL CCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
|
||
|
CALL CSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
|
||
|
$ AP( KCNEXT ), 1 )
|
||
|
AP( KCNEXT+K ) = AP( KCNEXT+K ) -
|
||
|
$ CDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 )
|
||
|
END IF
|
||
|
KSTEP = 2
|
||
|
KCNEXT = KCNEXT + K + 1
|
||
|
END IF
|
||
|
*
|
||
|
KP = ABS( IPIV( K ) )
|
||
|
IF( KP.NE.K ) THEN
|
||
|
*
|
||
|
* Interchange rows and columns K and KP in the leading
|
||
|
* submatrix A(1:k+1,1:k+1)
|
||
|
*
|
||
|
KPC = ( KP-1 )*KP / 2 + 1
|
||
|
CALL CSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
|
||
|
KX = KPC + KP - 1
|
||
|
DO 40 J = KP + 1, K - 1
|
||
|
KX = KX + J - 1
|
||
|
TEMP = AP( KC+J-1 )
|
||
|
AP( KC+J-1 ) = AP( KX )
|
||
|
AP( KX ) = TEMP
|
||
|
40 CONTINUE
|
||
|
TEMP = AP( KC+K-1 )
|
||
|
AP( KC+K-1 ) = AP( KPC+KP-1 )
|
||
|
AP( KPC+KP-1 ) = TEMP
|
||
|
IF( KSTEP.EQ.2 ) THEN
|
||
|
TEMP = AP( KC+K+K-1 )
|
||
|
AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
|
||
|
AP( KC+K+KP-1 ) = TEMP
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
K = K + KSTEP
|
||
|
KC = KCNEXT
|
||
|
GO TO 30
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute inv(A) from the factorization A = L*D*L**T.
|
||
|
*
|
||
|
* K is the main loop index, increasing from 1 to N in steps of
|
||
|
* 1 or 2, depending on the size of the diagonal blocks.
|
||
|
*
|
||
|
NPP = N*( N+1 ) / 2
|
||
|
K = N
|
||
|
KC = NPP
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* If K < 1, exit from loop.
|
||
|
*
|
||
|
IF( K.LT.1 )
|
||
|
$ GO TO 80
|
||
|
*
|
||
|
KCNEXT = KC - ( N-K+2 )
|
||
|
IF( IPIV( K ).GT.0 ) THEN
|
||
|
*
|
||
|
* 1 x 1 diagonal block
|
||
|
*
|
||
|
* Invert the diagonal block.
|
||
|
*
|
||
|
AP( KC ) = ONE / AP( KC )
|
||
|
*
|
||
|
* Compute column K of the inverse.
|
||
|
*
|
||
|
IF( K.LT.N ) THEN
|
||
|
CALL CCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
|
||
|
CALL CSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
|
||
|
$ ZERO, AP( KC+1 ), 1 )
|
||
|
AP( KC ) = AP( KC ) - CDOTU( N-K, WORK, 1, AP( KC+1 ),
|
||
|
$ 1 )
|
||
|
END IF
|
||
|
KSTEP = 1
|
||
|
ELSE
|
||
|
*
|
||
|
* 2 x 2 diagonal block
|
||
|
*
|
||
|
* Invert the diagonal block.
|
||
|
*
|
||
|
T = AP( KCNEXT+1 )
|
||
|
AK = AP( KCNEXT ) / T
|
||
|
AKP1 = AP( KC ) / T
|
||
|
AKKP1 = AP( KCNEXT+1 ) / T
|
||
|
D = T*( AK*AKP1-ONE )
|
||
|
AP( KCNEXT ) = AKP1 / D
|
||
|
AP( KC ) = AK / D
|
||
|
AP( KCNEXT+1 ) = -AKKP1 / D
|
||
|
*
|
||
|
* Compute columns K-1 and K of the inverse.
|
||
|
*
|
||
|
IF( K.LT.N ) THEN
|
||
|
CALL CCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
|
||
|
CALL CSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
|
||
|
$ ZERO, AP( KC+1 ), 1 )
|
||
|
AP( KC ) = AP( KC ) - CDOTU( N-K, WORK, 1, AP( KC+1 ),
|
||
|
$ 1 )
|
||
|
AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
|
||
|
$ CDOTU( N-K, AP( KC+1 ), 1,
|
||
|
$ AP( KCNEXT+2 ), 1 )
|
||
|
CALL CCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
|
||
|
CALL CSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
|
||
|
$ ZERO, AP( KCNEXT+2 ), 1 )
|
||
|
AP( KCNEXT ) = AP( KCNEXT ) -
|
||
|
$ CDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
|
||
|
END IF
|
||
|
KSTEP = 2
|
||
|
KCNEXT = KCNEXT - ( N-K+3 )
|
||
|
END IF
|
||
|
*
|
||
|
KP = ABS( IPIV( K ) )
|
||
|
IF( KP.NE.K ) THEN
|
||
|
*
|
||
|
* Interchange rows and columns K and KP in the trailing
|
||
|
* submatrix A(k-1:n,k-1:n)
|
||
|
*
|
||
|
KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
|
||
|
IF( KP.LT.N )
|
||
|
$ CALL CSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
|
||
|
KX = KC + KP - K
|
||
|
DO 70 J = K + 1, KP - 1
|
||
|
KX = KX + N - J + 1
|
||
|
TEMP = AP( KC+J-K )
|
||
|
AP( KC+J-K ) = AP( KX )
|
||
|
AP( KX ) = TEMP
|
||
|
70 CONTINUE
|
||
|
TEMP = AP( KC )
|
||
|
AP( KC ) = AP( KPC )
|
||
|
AP( KPC ) = TEMP
|
||
|
IF( KSTEP.EQ.2 ) THEN
|
||
|
TEMP = AP( KC-N+K-1 )
|
||
|
AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
|
||
|
AP( KC-N+KP-1 ) = TEMP
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
K = K - KSTEP
|
||
|
KC = KCNEXT
|
||
|
GO TO 60
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CSPTRI
|
||
|
*
|
||
|
END
|