You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
359 lines
9.9 KiB
359 lines
9.9 KiB
2 years ago
|
*> \brief \b DGEQP3
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DGEQP3 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqp3.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqp3.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqp3.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER JPVT( * )
|
||
|
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DGEQP3 computes a QR factorization with column pivoting of a
|
||
|
*> matrix A: A*P = Q*R using Level 3 BLAS.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit, the upper triangle of the array contains the
|
||
|
*> min(M,N)-by-N upper trapezoidal matrix R; the elements below
|
||
|
*> the diagonal, together with the array TAU, represent the
|
||
|
*> orthogonal matrix Q as a product of min(M,N) elementary
|
||
|
*> reflectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] JPVT
|
||
|
*> \verbatim
|
||
|
*> JPVT is INTEGER array, dimension (N)
|
||
|
*> On entry, if JPVT(J).ne.0, the J-th column of A is permuted
|
||
|
*> to the front of A*P (a leading column); if JPVT(J)=0,
|
||
|
*> the J-th column of A is a free column.
|
||
|
*> On exit, if JPVT(J)=K, then the J-th column of A*P was the
|
||
|
*> the K-th column of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is DOUBLE PRECISION array, dimension (min(M,N))
|
||
|
*> The scalar factors of the elementary reflectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO=0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= 3*N+1.
|
||
|
*> For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
|
||
|
*> is the optimal blocksize.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleGEcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrix Q is represented as a product of elementary reflectors
|
||
|
*>
|
||
|
*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
|
||
|
*>
|
||
|
*> Each H(i) has the form
|
||
|
*>
|
||
|
*> H(i) = I - tau * v * v**T
|
||
|
*>
|
||
|
*> where tau is a real scalar, and v is a real/complex vector
|
||
|
*> with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
|
||
|
*> A(i+1:m,i), and tau in TAU(i).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
|
||
|
*> X. Sun, Computer Science Dept., Duke University, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER JPVT( * )
|
||
|
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER INB, INBMIN, IXOVER
|
||
|
PARAMETER ( INB = 1, INBMIN = 2, IXOVER = 3 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY
|
||
|
INTEGER FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
|
||
|
$ NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DGEQRF, DLAQP2, DLAQPS, DORMQR, DSWAP, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ILAENV
|
||
|
DOUBLE PRECISION DNRM2
|
||
|
EXTERNAL ILAENV, DNRM2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC INT, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test input arguments
|
||
|
* ====================
|
||
|
*
|
||
|
INFO = 0
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
MINMN = MIN( M, N )
|
||
|
IF( MINMN.EQ.0 ) THEN
|
||
|
IWS = 1
|
||
|
LWKOPT = 1
|
||
|
ELSE
|
||
|
IWS = 3*N + 1
|
||
|
NB = ILAENV( INB, 'DGEQRF', ' ', M, N, -1, -1 )
|
||
|
LWKOPT = 2*N + ( N + 1 )*NB
|
||
|
END IF
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
*
|
||
|
IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -8
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DGEQP3', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Move initial columns up front.
|
||
|
*
|
||
|
NFXD = 1
|
||
|
DO 10 J = 1, N
|
||
|
IF( JPVT( J ).NE.0 ) THEN
|
||
|
IF( J.NE.NFXD ) THEN
|
||
|
CALL DSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
|
||
|
JPVT( J ) = JPVT( NFXD )
|
||
|
JPVT( NFXD ) = J
|
||
|
ELSE
|
||
|
JPVT( J ) = J
|
||
|
END IF
|
||
|
NFXD = NFXD + 1
|
||
|
ELSE
|
||
|
JPVT( J ) = J
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
NFXD = NFXD - 1
|
||
|
*
|
||
|
* Factorize fixed columns
|
||
|
* =======================
|
||
|
*
|
||
|
* Compute the QR factorization of fixed columns and update
|
||
|
* remaining columns.
|
||
|
*
|
||
|
IF( NFXD.GT.0 ) THEN
|
||
|
NA = MIN( M, NFXD )
|
||
|
*CC CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
|
||
|
CALL DGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
|
||
|
IWS = MAX( IWS, INT( WORK( 1 ) ) )
|
||
|
IF( NA.LT.N ) THEN
|
||
|
*CC CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
|
||
|
*CC $ TAU, A( 1, NA+1 ), LDA, WORK, INFO )
|
||
|
CALL DORMQR( 'Left', 'Transpose', M, N-NA, NA, A, LDA, TAU,
|
||
|
$ A( 1, NA+1 ), LDA, WORK, LWORK, INFO )
|
||
|
IWS = MAX( IWS, INT( WORK( 1 ) ) )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Factorize free columns
|
||
|
* ======================
|
||
|
*
|
||
|
IF( NFXD.LT.MINMN ) THEN
|
||
|
*
|
||
|
SM = M - NFXD
|
||
|
SN = N - NFXD
|
||
|
SMINMN = MINMN - NFXD
|
||
|
*
|
||
|
* Determine the block size.
|
||
|
*
|
||
|
NB = ILAENV( INB, 'DGEQRF', ' ', SM, SN, -1, -1 )
|
||
|
NBMIN = 2
|
||
|
NX = 0
|
||
|
*
|
||
|
IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
|
||
|
*
|
||
|
* Determine when to cross over from blocked to unblocked code.
|
||
|
*
|
||
|
NX = MAX( 0, ILAENV( IXOVER, 'DGEQRF', ' ', SM, SN, -1,
|
||
|
$ -1 ) )
|
||
|
*
|
||
|
*
|
||
|
IF( NX.LT.SMINMN ) THEN
|
||
|
*
|
||
|
* Determine if workspace is large enough for blocked code.
|
||
|
*
|
||
|
MINWS = 2*SN + ( SN+1 )*NB
|
||
|
IWS = MAX( IWS, MINWS )
|
||
|
IF( LWORK.LT.MINWS ) THEN
|
||
|
*
|
||
|
* Not enough workspace to use optimal NB: Reduce NB and
|
||
|
* determine the minimum value of NB.
|
||
|
*
|
||
|
NB = ( LWORK-2*SN ) / ( SN+1 )
|
||
|
NBMIN = MAX( 2, ILAENV( INBMIN, 'DGEQRF', ' ', SM, SN,
|
||
|
$ -1, -1 ) )
|
||
|
*
|
||
|
*
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize partial column norms. The first N elements of work
|
||
|
* store the exact column norms.
|
||
|
*
|
||
|
DO 20 J = NFXD + 1, N
|
||
|
WORK( J ) = DNRM2( SM, A( NFXD+1, J ), 1 )
|
||
|
WORK( N+J ) = WORK( J )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
|
||
|
$ ( NX.LT.SMINMN ) ) THEN
|
||
|
*
|
||
|
* Use blocked code initially.
|
||
|
*
|
||
|
J = NFXD + 1
|
||
|
*
|
||
|
* Compute factorization: while loop.
|
||
|
*
|
||
|
*
|
||
|
TOPBMN = MINMN - NX
|
||
|
30 CONTINUE
|
||
|
IF( J.LE.TOPBMN ) THEN
|
||
|
JB = MIN( NB, TOPBMN-J+1 )
|
||
|
*
|
||
|
* Factorize JB columns among columns J:N.
|
||
|
*
|
||
|
CALL DLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
|
||
|
$ JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ),
|
||
|
$ WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 )
|
||
|
*
|
||
|
J = J + FJB
|
||
|
GO TO 30
|
||
|
END IF
|
||
|
ELSE
|
||
|
J = NFXD + 1
|
||
|
END IF
|
||
|
*
|
||
|
* Use unblocked code to factor the last or only block.
|
||
|
*
|
||
|
*
|
||
|
IF( J.LE.MINMN )
|
||
|
$ CALL DLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
|
||
|
$ TAU( J ), WORK( J ), WORK( N+J ),
|
||
|
$ WORK( 2*N+1 ) )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
WORK( 1 ) = IWS
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DGEQP3
|
||
|
*
|
||
|
END
|