You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
678 lines
22 KiB
678 lines
22 KiB
2 years ago
|
*> \brief <b> DGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DGGES + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgges.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
|
||
|
* SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
|
||
|
* LDVSR, WORK, LWORK, BWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBVSL, JOBVSR, SORT
|
||
|
* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL BWORK( * )
|
||
|
* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
|
||
|
* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
|
||
|
* $ VSR( LDVSR, * ), WORK( * )
|
||
|
* ..
|
||
|
* .. Function Arguments ..
|
||
|
* LOGICAL SELCTG
|
||
|
* EXTERNAL SELCTG
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
|
||
|
*> the generalized eigenvalues, the generalized real Schur form (S,T),
|
||
|
*> optionally, the left and/or right matrices of Schur vectors (VSL and
|
||
|
*> VSR). This gives the generalized Schur factorization
|
||
|
*>
|
||
|
*> (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
|
||
|
*>
|
||
|
*> Optionally, it also orders the eigenvalues so that a selected cluster
|
||
|
*> of eigenvalues appears in the leading diagonal blocks of the upper
|
||
|
*> quasi-triangular matrix S and the upper triangular matrix T.The
|
||
|
*> leading columns of VSL and VSR then form an orthonormal basis for the
|
||
|
*> corresponding left and right eigenspaces (deflating subspaces).
|
||
|
*>
|
||
|
*> (If only the generalized eigenvalues are needed, use the driver
|
||
|
*> DGGEV instead, which is faster.)
|
||
|
*>
|
||
|
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
|
||
|
*> or a ratio alpha/beta = w, such that A - w*B is singular. It is
|
||
|
*> usually represented as the pair (alpha,beta), as there is a
|
||
|
*> reasonable interpretation for beta=0 or both being zero.
|
||
|
*>
|
||
|
*> A pair of matrices (S,T) is in generalized real Schur form if T is
|
||
|
*> upper triangular with non-negative diagonal and S is block upper
|
||
|
*> triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
|
||
|
*> to real generalized eigenvalues, while 2-by-2 blocks of S will be
|
||
|
*> "standardized" by making the corresponding elements of T have the
|
||
|
*> form:
|
||
|
*> [ a 0 ]
|
||
|
*> [ 0 b ]
|
||
|
*>
|
||
|
*> and the pair of corresponding 2-by-2 blocks in S and T will have a
|
||
|
*> complex conjugate pair of generalized eigenvalues.
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBVSL
|
||
|
*> \verbatim
|
||
|
*> JOBVSL is CHARACTER*1
|
||
|
*> = 'N': do not compute the left Schur vectors;
|
||
|
*> = 'V': compute the left Schur vectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBVSR
|
||
|
*> \verbatim
|
||
|
*> JOBVSR is CHARACTER*1
|
||
|
*> = 'N': do not compute the right Schur vectors;
|
||
|
*> = 'V': compute the right Schur vectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SORT
|
||
|
*> \verbatim
|
||
|
*> SORT is CHARACTER*1
|
||
|
*> Specifies whether or not to order the eigenvalues on the
|
||
|
*> diagonal of the generalized Schur form.
|
||
|
*> = 'N': Eigenvalues are not ordered;
|
||
|
*> = 'S': Eigenvalues are ordered (see SELCTG);
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SELCTG
|
||
|
*> \verbatim
|
||
|
*> SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
|
||
|
*> SELCTG must be declared EXTERNAL in the calling subroutine.
|
||
|
*> If SORT = 'N', SELCTG is not referenced.
|
||
|
*> If SORT = 'S', SELCTG is used to select eigenvalues to sort
|
||
|
*> to the top left of the Schur form.
|
||
|
*> An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
|
||
|
*> SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
|
||
|
*> one of a complex conjugate pair of eigenvalues is selected,
|
||
|
*> then both complex eigenvalues are selected.
|
||
|
*>
|
||
|
*> Note that in the ill-conditioned case, a selected complex
|
||
|
*> eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
|
||
|
*> BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
|
||
|
*> in this case.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices A, B, VSL, and VSR. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
||
|
*> On entry, the first of the pair of matrices.
|
||
|
*> On exit, A has been overwritten by its generalized Schur
|
||
|
*> form S.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB, N)
|
||
|
*> On entry, the second of the pair of matrices.
|
||
|
*> On exit, B has been overwritten by its generalized Schur
|
||
|
*> form T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SDIM
|
||
|
*> \verbatim
|
||
|
*> SDIM is INTEGER
|
||
|
*> If SORT = 'N', SDIM = 0.
|
||
|
*> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
|
||
|
*> for which SELCTG is true. (Complex conjugate pairs for which
|
||
|
*> SELCTG is true for either eigenvalue count as 2.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ALPHAR
|
||
|
*> \verbatim
|
||
|
*> ALPHAR is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ALPHAI
|
||
|
*> \verbatim
|
||
|
*> ALPHAI is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
|
||
|
*> be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i,
|
||
|
*> and BETA(j),j=1,...,N are the diagonals of the complex Schur
|
||
|
*> form (S,T) that would result if the 2-by-2 diagonal blocks of
|
||
|
*> the real Schur form of (A,B) were further reduced to
|
||
|
*> triangular form using 2-by-2 complex unitary transformations.
|
||
|
*> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
|
||
|
*> positive, then the j-th and (j+1)-st eigenvalues are a
|
||
|
*> complex conjugate pair, with ALPHAI(j+1) negative.
|
||
|
*>
|
||
|
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
|
||
|
*> may easily over- or underflow, and BETA(j) may even be zero.
|
||
|
*> Thus, the user should avoid naively computing the ratio.
|
||
|
*> However, ALPHAR and ALPHAI will be always less than and
|
||
|
*> usually comparable with norm(A) in magnitude, and BETA always
|
||
|
*> less than and usually comparable with norm(B).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VSL
|
||
|
*> \verbatim
|
||
|
*> VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
|
||
|
*> If JOBVSL = 'V', VSL will contain the left Schur vectors.
|
||
|
*> Not referenced if JOBVSL = 'N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVSL
|
||
|
*> \verbatim
|
||
|
*> LDVSL is INTEGER
|
||
|
*> The leading dimension of the matrix VSL. LDVSL >=1, and
|
||
|
*> if JOBVSL = 'V', LDVSL >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VSR
|
||
|
*> \verbatim
|
||
|
*> VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
|
||
|
*> If JOBVSR = 'V', VSR will contain the right Schur vectors.
|
||
|
*> Not referenced if JOBVSR = 'N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVSR
|
||
|
*> \verbatim
|
||
|
*> LDVSR is INTEGER
|
||
|
*> The leading dimension of the matrix VSR. LDVSR >= 1, and
|
||
|
*> if JOBVSR = 'V', LDVSR >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK.
|
||
|
*> If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
|
||
|
*> For good performance , LWORK must generally be larger.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BWORK
|
||
|
*> \verbatim
|
||
|
*> BWORK is LOGICAL array, dimension (N)
|
||
|
*> Not referenced if SORT = 'N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> = 1,...,N:
|
||
|
*> The QZ iteration failed. (A,B) are not in Schur
|
||
|
*> form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
|
||
|
*> be correct for j=INFO+1,...,N.
|
||
|
*> > N: =N+1: other than QZ iteration failed in DHGEQZ.
|
||
|
*> =N+2: after reordering, roundoff changed values of
|
||
|
*> some complex eigenvalues so that leading
|
||
|
*> eigenvalues in the Generalized Schur form no
|
||
|
*> longer satisfy SELCTG=.TRUE. This could also
|
||
|
*> be caused due to scaling.
|
||
|
*> =N+3: reordering failed in DTGSEN.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleGEeigen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
|
||
|
$ SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
|
||
|
$ LDVSR, WORK, LWORK, BWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBVSL, JOBVSR, SORT
|
||
|
INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL BWORK( * )
|
||
|
DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
|
||
|
$ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
|
||
|
$ VSR( LDVSR, * ), WORK( * )
|
||
|
* ..
|
||
|
* .. Function Arguments ..
|
||
|
LOGICAL SELCTG
|
||
|
EXTERNAL SELCTG
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
|
||
|
$ LQUERY, LST2SL, WANTST
|
||
|
INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
|
||
|
$ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
|
||
|
$ MINWRK
|
||
|
DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
|
||
|
$ PVSR, SAFMAX, SAFMIN, SMLNUM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER IDUM( 1 )
|
||
|
DOUBLE PRECISION DIF( 2 )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
|
||
|
$ DLASCL, DLASET, DORGQR, DORMQR, DTGSEN, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ILAENV
|
||
|
DOUBLE PRECISION DLAMCH, DLANGE
|
||
|
EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Decode the input arguments
|
||
|
*
|
||
|
IF( LSAME( JOBVSL, 'N' ) ) THEN
|
||
|
IJOBVL = 1
|
||
|
ILVSL = .FALSE.
|
||
|
ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
|
||
|
IJOBVL = 2
|
||
|
ILVSL = .TRUE.
|
||
|
ELSE
|
||
|
IJOBVL = -1
|
||
|
ILVSL = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( JOBVSR, 'N' ) ) THEN
|
||
|
IJOBVR = 1
|
||
|
ILVSR = .FALSE.
|
||
|
ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
|
||
|
IJOBVR = 2
|
||
|
ILVSR = .TRUE.
|
||
|
ELSE
|
||
|
IJOBVR = -1
|
||
|
ILVSR = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
WANTST = LSAME( SORT, 'S' )
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
IF( IJOBVL.LE.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( IJOBVR.LE.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
|
||
|
INFO = -15
|
||
|
ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
|
||
|
INFO = -17
|
||
|
END IF
|
||
|
*
|
||
|
* Compute workspace
|
||
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
||
|
* minimal amount of workspace needed at that point in the code,
|
||
|
* as well as the preferred amount for good performance.
|
||
|
* NB refers to the optimal block size for the immediately
|
||
|
* following subroutine, as returned by ILAENV.)
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( N.GT.0 )THEN
|
||
|
MINWRK = MAX( 8*N, 6*N + 16 )
|
||
|
MAXWRK = MINWRK - N +
|
||
|
$ N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
|
||
|
MAXWRK = MAX( MAXWRK, MINWRK - N +
|
||
|
$ N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
|
||
|
IF( ILVSL ) THEN
|
||
|
MAXWRK = MAX( MAXWRK, MINWRK - N +
|
||
|
$ N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
|
||
|
END IF
|
||
|
ELSE
|
||
|
MINWRK = 1
|
||
|
MAXWRK = 1
|
||
|
END IF
|
||
|
WORK( 1 ) = MAXWRK
|
||
|
*
|
||
|
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
|
||
|
$ INFO = -19
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DGGES ', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
SDIM = 0
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants
|
||
|
*
|
||
|
EPS = DLAMCH( 'P' )
|
||
|
SAFMIN = DLAMCH( 'S' )
|
||
|
SAFMAX = ONE / SAFMIN
|
||
|
SMLNUM = SQRT( SAFMIN ) / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
|
||
|
ILASCL = .FALSE.
|
||
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
||
|
ANRMTO = SMLNUM
|
||
|
ILASCL = .TRUE.
|
||
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
||
|
ANRMTO = BIGNUM
|
||
|
ILASCL = .TRUE.
|
||
|
END IF
|
||
|
IF( ILASCL )
|
||
|
$ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
|
||
|
*
|
||
|
* Scale B if max element outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
|
||
|
ILBSCL = .FALSE.
|
||
|
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
|
||
|
BNRMTO = SMLNUM
|
||
|
ILBSCL = .TRUE.
|
||
|
ELSE IF( BNRM.GT.BIGNUM ) THEN
|
||
|
BNRMTO = BIGNUM
|
||
|
ILBSCL = .TRUE.
|
||
|
END IF
|
||
|
IF( ILBSCL )
|
||
|
$ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
|
||
|
*
|
||
|
* Permute the matrix to make it more nearly triangular
|
||
|
* (Workspace: need 6*N + 2*N space for storing balancing factors)
|
||
|
*
|
||
|
ILEFT = 1
|
||
|
IRIGHT = N + 1
|
||
|
IWRK = IRIGHT + N
|
||
|
CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
|
||
|
$ WORK( IRIGHT ), WORK( IWRK ), IERR )
|
||
|
*
|
||
|
* Reduce B to triangular form (QR decomposition of B)
|
||
|
* (Workspace: need N, prefer N*NB)
|
||
|
*
|
||
|
IROWS = IHI + 1 - ILO
|
||
|
ICOLS = N + 1 - ILO
|
||
|
ITAU = IWRK
|
||
|
IWRK = ITAU + IROWS
|
||
|
CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
|
||
|
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
|
||
|
*
|
||
|
* Apply the orthogonal transformation to matrix A
|
||
|
* (Workspace: need N, prefer N*NB)
|
||
|
*
|
||
|
CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
|
||
|
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
|
||
|
$ LWORK+1-IWRK, IERR )
|
||
|
*
|
||
|
* Initialize VSL
|
||
|
* (Workspace: need N, prefer N*NB)
|
||
|
*
|
||
|
IF( ILVSL ) THEN
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
|
||
|
IF( IROWS.GT.1 ) THEN
|
||
|
CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
|
||
|
$ VSL( ILO+1, ILO ), LDVSL )
|
||
|
END IF
|
||
|
CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
|
||
|
$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize VSR
|
||
|
*
|
||
|
IF( ILVSR )
|
||
|
$ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
|
||
|
*
|
||
|
* Reduce to generalized Hessenberg form
|
||
|
* (Workspace: none needed)
|
||
|
*
|
||
|
CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
|
||
|
$ LDVSL, VSR, LDVSR, IERR )
|
||
|
*
|
||
|
* Perform QZ algorithm, computing Schur vectors if desired
|
||
|
* (Workspace: need N)
|
||
|
*
|
||
|
IWRK = ITAU
|
||
|
CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
|
||
|
$ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
|
||
|
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
|
||
|
IF( IERR.NE.0 ) THEN
|
||
|
IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
|
||
|
INFO = IERR
|
||
|
ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
|
||
|
INFO = IERR - N
|
||
|
ELSE
|
||
|
INFO = N + 1
|
||
|
END IF
|
||
|
GO TO 50
|
||
|
END IF
|
||
|
*
|
||
|
* Sort eigenvalues ALPHA/BETA if desired
|
||
|
* (Workspace: need 4*N+16 )
|
||
|
*
|
||
|
SDIM = 0
|
||
|
IF( WANTST ) THEN
|
||
|
*
|
||
|
* Undo scaling on eigenvalues before SELCTGing
|
||
|
*
|
||
|
IF( ILASCL ) THEN
|
||
|
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
|
||
|
$ IERR )
|
||
|
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
|
||
|
$ IERR )
|
||
|
END IF
|
||
|
IF( ILBSCL )
|
||
|
$ CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
|
||
|
*
|
||
|
* Select eigenvalues
|
||
|
*
|
||
|
DO 10 I = 1, N
|
||
|
BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
|
||
|
$ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
|
||
|
$ PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
|
||
|
$ IERR )
|
||
|
IF( IERR.EQ.1 )
|
||
|
$ INFO = N + 3
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Apply back-permutation to VSL and VSR
|
||
|
* (Workspace: none needed)
|
||
|
*
|
||
|
IF( ILVSL )
|
||
|
$ CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
|
||
|
$ WORK( IRIGHT ), N, VSL, LDVSL, IERR )
|
||
|
*
|
||
|
IF( ILVSR )
|
||
|
$ CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
|
||
|
$ WORK( IRIGHT ), N, VSR, LDVSR, IERR )
|
||
|
*
|
||
|
* Check if unscaling would cause over/underflow, if so, rescale
|
||
|
* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
|
||
|
* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
|
||
|
*
|
||
|
IF( ILASCL ) THEN
|
||
|
DO 20 I = 1, N
|
||
|
IF( ALPHAI( I ).NE.ZERO ) THEN
|
||
|
IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
|
||
|
$ ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
|
||
|
WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
|
||
|
BETA( I ) = BETA( I )*WORK( 1 )
|
||
|
ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
|
||
|
ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
|
||
|
ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
|
||
|
$ ( ANRMTO / ANRM ) .OR.
|
||
|
$ ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
|
||
|
$ THEN
|
||
|
WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
|
||
|
BETA( I ) = BETA( I )*WORK( 1 )
|
||
|
ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
|
||
|
ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF( ILBSCL ) THEN
|
||
|
DO 30 I = 1, N
|
||
|
IF( ALPHAI( I ).NE.ZERO ) THEN
|
||
|
IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
|
||
|
$ ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
|
||
|
WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
|
||
|
BETA( I ) = BETA( I )*WORK( 1 )
|
||
|
ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
|
||
|
ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Undo scaling
|
||
|
*
|
||
|
IF( ILASCL ) THEN
|
||
|
CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
|
||
|
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
|
||
|
CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
|
||
|
END IF
|
||
|
*
|
||
|
IF( ILBSCL ) THEN
|
||
|
CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
|
||
|
CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
|
||
|
END IF
|
||
|
*
|
||
|
IF( WANTST ) THEN
|
||
|
*
|
||
|
* Check if reordering is correct
|
||
|
*
|
||
|
LASTSL = .TRUE.
|
||
|
LST2SL = .TRUE.
|
||
|
SDIM = 0
|
||
|
IP = 0
|
||
|
DO 40 I = 1, N
|
||
|
CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
|
||
|
IF( ALPHAI( I ).EQ.ZERO ) THEN
|
||
|
IF( CURSL )
|
||
|
$ SDIM = SDIM + 1
|
||
|
IP = 0
|
||
|
IF( CURSL .AND. .NOT.LASTSL )
|
||
|
$ INFO = N + 2
|
||
|
ELSE
|
||
|
IF( IP.EQ.1 ) THEN
|
||
|
*
|
||
|
* Last eigenvalue of conjugate pair
|
||
|
*
|
||
|
CURSL = CURSL .OR. LASTSL
|
||
|
LASTSL = CURSL
|
||
|
IF( CURSL )
|
||
|
$ SDIM = SDIM + 2
|
||
|
IP = -1
|
||
|
IF( CURSL .AND. .NOT.LST2SL )
|
||
|
$ INFO = N + 2
|
||
|
ELSE
|
||
|
*
|
||
|
* First eigenvalue of conjugate pair
|
||
|
*
|
||
|
IP = 1
|
||
|
END IF
|
||
|
END IF
|
||
|
LST2SL = LASTSL
|
||
|
LASTSL = CURSL
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
WORK( 1 ) = MAXWRK
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DGGES
|
||
|
*
|
||
|
END
|