You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
359 lines
10 KiB
359 lines
10 KiB
2 years ago
|
*> \brief \b DGGHRD
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DGGHRD + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgghrd.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgghrd.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgghrd.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
|
||
|
* LDQ, Z, LDZ, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER COMPQ, COMPZ
|
||
|
* INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
||
|
* $ Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DGGHRD reduces a pair of real matrices (A,B) to generalized upper
|
||
|
*> Hessenberg form using orthogonal transformations, where A is a
|
||
|
*> general matrix and B is upper triangular. The form of the
|
||
|
*> generalized eigenvalue problem is
|
||
|
*> A*x = lambda*B*x,
|
||
|
*> and B is typically made upper triangular by computing its QR
|
||
|
*> factorization and moving the orthogonal matrix Q to the left side
|
||
|
*> of the equation.
|
||
|
*>
|
||
|
*> This subroutine simultaneously reduces A to a Hessenberg matrix H:
|
||
|
*> Q**T*A*Z = H
|
||
|
*> and transforms B to another upper triangular matrix T:
|
||
|
*> Q**T*B*Z = T
|
||
|
*> in order to reduce the problem to its standard form
|
||
|
*> H*y = lambda*T*y
|
||
|
*> where y = Z**T*x.
|
||
|
*>
|
||
|
*> The orthogonal matrices Q and Z are determined as products of Givens
|
||
|
*> rotations. They may either be formed explicitly, or they may be
|
||
|
*> postmultiplied into input matrices Q1 and Z1, so that
|
||
|
*>
|
||
|
*> Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
|
||
|
*>
|
||
|
*> Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
|
||
|
*>
|
||
|
*> If Q1 is the orthogonal matrix from the QR factorization of B in the
|
||
|
*> original equation A*x = lambda*B*x, then DGGHRD reduces the original
|
||
|
*> problem to generalized Hessenberg form.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] COMPQ
|
||
|
*> \verbatim
|
||
|
*> COMPQ is CHARACTER*1
|
||
|
*> = 'N': do not compute Q;
|
||
|
*> = 'I': Q is initialized to the unit matrix, and the
|
||
|
*> orthogonal matrix Q is returned;
|
||
|
*> = 'V': Q must contain an orthogonal matrix Q1 on entry,
|
||
|
*> and the product Q1*Q is returned.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] COMPZ
|
||
|
*> \verbatim
|
||
|
*> COMPZ is CHARACTER*1
|
||
|
*> = 'N': do not compute Z;
|
||
|
*> = 'I': Z is initialized to the unit matrix, and the
|
||
|
*> orthogonal matrix Z is returned;
|
||
|
*> = 'V': Z must contain an orthogonal matrix Z1 on entry,
|
||
|
*> and the product Z1*Z is returned.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ILO
|
||
|
*> \verbatim
|
||
|
*> ILO is INTEGER
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IHI
|
||
|
*> \verbatim
|
||
|
*> IHI is INTEGER
|
||
|
*>
|
||
|
*> ILO and IHI mark the rows and columns of A which are to be
|
||
|
*> reduced. It is assumed that A is already upper triangular
|
||
|
*> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
|
||
|
*> normally set by a previous call to DGGBAL; otherwise they
|
||
|
*> should be set to 1 and N respectively.
|
||
|
*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
||
|
*> On entry, the N-by-N general matrix to be reduced.
|
||
|
*> On exit, the upper triangle and the first subdiagonal of A
|
||
|
*> are overwritten with the upper Hessenberg matrix H, and the
|
||
|
*> rest is set to zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB, N)
|
||
|
*> On entry, the N-by-N upper triangular matrix B.
|
||
|
*> On exit, the upper triangular matrix T = Q**T B Z. The
|
||
|
*> elements below the diagonal are set to zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is DOUBLE PRECISION array, dimension (LDQ, N)
|
||
|
*> On entry, if COMPQ = 'V', the orthogonal matrix Q1,
|
||
|
*> typically from the QR factorization of B.
|
||
|
*> On exit, if COMPQ='I', the orthogonal matrix Q, and if
|
||
|
*> COMPQ = 'V', the product Q1*Q.
|
||
|
*> Not referenced if COMPQ='N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ
|
||
|
*> \verbatim
|
||
|
*> LDQ is INTEGER
|
||
|
*> The leading dimension of the array Q.
|
||
|
*> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
|
||
|
*> On entry, if COMPZ = 'V', the orthogonal matrix Z1.
|
||
|
*> On exit, if COMPZ='I', the orthogonal matrix Z, and if
|
||
|
*> COMPZ = 'V', the product Z1*Z.
|
||
|
*> Not referenced if COMPZ='N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z.
|
||
|
*> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> This routine reduces A to Hessenberg and B to triangular form by
|
||
|
*> an unblocked reduction, as described in _Matrix_Computations_,
|
||
|
*> by Golub and Van Loan (Johns Hopkins Press.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
|
||
|
$ LDQ, Z, LDZ, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER COMPQ, COMPZ
|
||
|
INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
||
|
$ Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ILQ, ILZ
|
||
|
INTEGER ICOMPQ, ICOMPZ, JCOL, JROW
|
||
|
DOUBLE PRECISION C, S, TEMP
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLARTG, DLASET, DROT, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Decode COMPQ
|
||
|
*
|
||
|
IF( LSAME( COMPQ, 'N' ) ) THEN
|
||
|
ILQ = .FALSE.
|
||
|
ICOMPQ = 1
|
||
|
ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
|
||
|
ILQ = .TRUE.
|
||
|
ICOMPQ = 2
|
||
|
ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
|
||
|
ILQ = .TRUE.
|
||
|
ICOMPQ = 3
|
||
|
ELSE
|
||
|
ICOMPQ = 0
|
||
|
END IF
|
||
|
*
|
||
|
* Decode COMPZ
|
||
|
*
|
||
|
IF( LSAME( COMPZ, 'N' ) ) THEN
|
||
|
ILZ = .FALSE.
|
||
|
ICOMPZ = 1
|
||
|
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
|
||
|
ILZ = .TRUE.
|
||
|
ICOMPZ = 2
|
||
|
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
|
||
|
ILZ = .TRUE.
|
||
|
ICOMPZ = 3
|
||
|
ELSE
|
||
|
ICOMPZ = 0
|
||
|
END IF
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( ICOMPQ.LE.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( ICOMPZ.LE.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( ILO.LT.1 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
|
||
|
INFO = -13
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DGGHRD', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize Q and Z if desired.
|
||
|
*
|
||
|
IF( ICOMPQ.EQ.3 )
|
||
|
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
|
||
|
IF( ICOMPZ.EQ.3 )
|
||
|
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.LE.1 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Zero out lower triangle of B
|
||
|
*
|
||
|
DO 20 JCOL = 1, N - 1
|
||
|
DO 10 JROW = JCOL + 1, N
|
||
|
B( JROW, JCOL ) = ZERO
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Reduce A and B
|
||
|
*
|
||
|
DO 40 JCOL = ILO, IHI - 2
|
||
|
*
|
||
|
DO 30 JROW = IHI, JCOL + 2, -1
|
||
|
*
|
||
|
* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
|
||
|
*
|
||
|
TEMP = A( JROW-1, JCOL )
|
||
|
CALL DLARTG( TEMP, A( JROW, JCOL ), C, S,
|
||
|
$ A( JROW-1, JCOL ) )
|
||
|
A( JROW, JCOL ) = ZERO
|
||
|
CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
|
||
|
$ A( JROW, JCOL+1 ), LDA, C, S )
|
||
|
CALL DROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
|
||
|
$ B( JROW, JROW-1 ), LDB, C, S )
|
||
|
IF( ILQ )
|
||
|
$ CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C, S )
|
||
|
*
|
||
|
* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
|
||
|
*
|
||
|
TEMP = B( JROW, JROW )
|
||
|
CALL DLARTG( TEMP, B( JROW, JROW-1 ), C, S,
|
||
|
$ B( JROW, JROW ) )
|
||
|
B( JROW, JROW-1 ) = ZERO
|
||
|
CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
|
||
|
CALL DROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
|
||
|
$ S )
|
||
|
IF( ILZ )
|
||
|
$ CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DGGHRD
|
||
|
*
|
||
|
END
|