You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
3.7 KiB
143 lines
3.7 KiB
2 years ago
|
*> \brief \b DLA_GERPVGRW
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLA_GERPVGRW + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerpvgrw.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerpvgrw.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerpvgrw.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* DOUBLE PRECISION FUNCTION DLA_GERPVGRW( N, NCOLS, A, LDA, AF,
|
||
|
* LDAF )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER N, NCOLS, LDA, LDAF
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION A( LDA, * ), AF( LDAF, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*>
|
||
|
*> DLA_GERPVGRW computes the reciprocal pivot growth factor
|
||
|
*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
|
||
|
*> much less than 1, the stability of the LU factorization of the
|
||
|
*> (equilibrated) matrix A could be poor. This also means that the
|
||
|
*> solution X, estimated condition numbers, and error bounds could be
|
||
|
*> unreliable.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of linear equations, i.e., the order of the
|
||
|
*> matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NCOLS
|
||
|
*> \verbatim
|
||
|
*> NCOLS is INTEGER
|
||
|
*> The number of columns of the matrix A. NCOLS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> On entry, the N-by-N matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AF
|
||
|
*> \verbatim
|
||
|
*> AF is DOUBLE PRECISION array, dimension (LDAF,N)
|
||
|
*> The factors L and U from the factorization
|
||
|
*> A = P*L*U as computed by DGETRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAF
|
||
|
*> \verbatim
|
||
|
*> LDAF is INTEGER
|
||
|
*> The leading dimension of the array AF. LDAF >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleGEcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
DOUBLE PRECISION FUNCTION DLA_GERPVGRW( N, NCOLS, A, LDA, AF,
|
||
|
$ LDAF )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER N, NCOLS, LDA, LDAF
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), AF( LDAF, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
DOUBLE PRECISION AMAX, UMAX, RPVGRW
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
RPVGRW = 1.0D+0
|
||
|
|
||
|
DO J = 1, NCOLS
|
||
|
AMAX = 0.0D+0
|
||
|
UMAX = 0.0D+0
|
||
|
DO I = 1, N
|
||
|
AMAX = MAX( ABS( A( I, J ) ), AMAX )
|
||
|
END DO
|
||
|
DO I = 1, J
|
||
|
UMAX = MAX( ABS( AF( I, J ) ), UMAX )
|
||
|
END DO
|
||
|
IF ( UMAX /= 0.0D+0 ) THEN
|
||
|
RPVGRW = MIN( AMAX / UMAX, RPVGRW )
|
||
|
END IF
|
||
|
END DO
|
||
|
DLA_GERPVGRW = RPVGRW
|
||
|
*
|
||
|
* End of DLA_GERPVGRW
|
||
|
*
|
||
|
END
|