You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
4.9 KiB
184 lines
4.9 KiB
2 years ago
|
*> \brief \b DLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLAQR1 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr1.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr1.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr1.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* DOUBLE PRECISION SI1, SI2, SR1, SR2
|
||
|
* INTEGER LDH, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION H( LDH, * ), V( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a
|
||
|
*> scalar multiple of the first column of the product
|
||
|
*>
|
||
|
*> (*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
|
||
|
*>
|
||
|
*> scaling to avoid overflows and most underflows. It
|
||
|
*> is assumed that either
|
||
|
*>
|
||
|
*> 1) sr1 = sr2 and si1 = -si2
|
||
|
*> or
|
||
|
*> 2) si1 = si2 = 0.
|
||
|
*>
|
||
|
*> This is useful for starting double implicit shift bulges
|
||
|
*> in the QR algorithm.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> Order of the matrix H. N must be either 2 or 3.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] H
|
||
|
*> \verbatim
|
||
|
*> H is DOUBLE PRECISION array, dimension (LDH,N)
|
||
|
*> The 2-by-2 or 3-by-3 matrix H in (*).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDH
|
||
|
*> \verbatim
|
||
|
*> LDH is INTEGER
|
||
|
*> The leading dimension of H as declared in
|
||
|
*> the calling procedure. LDH >= N
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SR1
|
||
|
*> \verbatim
|
||
|
*> SR1 is DOUBLE PRECISION
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SI1
|
||
|
*> \verbatim
|
||
|
*> SI1 is DOUBLE PRECISION
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SR2
|
||
|
*> \verbatim
|
||
|
*> SR2 is DOUBLE PRECISION
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SI2
|
||
|
*> \verbatim
|
||
|
*> SI2 is DOUBLE PRECISION
|
||
|
*> The shifts in (*).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] V
|
||
|
*> \verbatim
|
||
|
*> V is DOUBLE PRECISION array, dimension (N)
|
||
|
*> A scalar multiple of the first column of the
|
||
|
*> matrix K in (*).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Karen Braman and Ralph Byers, Department of Mathematics,
|
||
|
*> University of Kansas, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION SI1, SI2, SR1, SR2
|
||
|
INTEGER LDH, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION H( LDH, * ), V( * )
|
||
|
* ..
|
||
|
*
|
||
|
* ================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER ( ZERO = 0.0d0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
DOUBLE PRECISION H21S, H31S, S
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.NE.2 .AND. N.NE.3 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( N.EQ.2 ) THEN
|
||
|
S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) )
|
||
|
IF( S.EQ.ZERO ) THEN
|
||
|
V( 1 ) = ZERO
|
||
|
V( 2 ) = ZERO
|
||
|
ELSE
|
||
|
H21S = H( 2, 1 ) / S
|
||
|
V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )*
|
||
|
$ ( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S )
|
||
|
V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 )
|
||
|
END IF
|
||
|
ELSE
|
||
|
S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) +
|
||
|
$ ABS( H( 3, 1 ) )
|
||
|
IF( S.EQ.ZERO ) THEN
|
||
|
V( 1 ) = ZERO
|
||
|
V( 2 ) = ZERO
|
||
|
V( 3 ) = ZERO
|
||
|
ELSE
|
||
|
H21S = H( 2, 1 ) / S
|
||
|
H31S = H( 3, 1 ) / S
|
||
|
V( 1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) -
|
||
|
$ SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S
|
||
|
V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) +
|
||
|
$ H( 2, 3 )*H31S
|
||
|
V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) +
|
||
|
$ H21S*H( 3, 2 )
|
||
|
END IF
|
||
|
END IF
|
||
|
END
|