You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
492 lines
16 KiB
492 lines
16 KiB
2 years ago
|
*> \brief <b> DPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DPOSVX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dposvx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dposvx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dposvx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
|
||
|
* S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
|
||
|
* IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER EQUED, FACT, UPLO
|
||
|
* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
|
||
|
* DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IWORK( * )
|
||
|
* DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
|
||
|
* $ BERR( * ), FERR( * ), S( * ), WORK( * ),
|
||
|
* $ X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
|
||
|
*> compute the solution to a real system of linear equations
|
||
|
*> A * X = B,
|
||
|
*> where A is an N-by-N symmetric positive definite matrix and X and B
|
||
|
*> are N-by-NRHS matrices.
|
||
|
*>
|
||
|
*> Error bounds on the solution and a condition estimate are also
|
||
|
*> provided.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Description:
|
||
|
* =================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The following steps are performed:
|
||
|
*>
|
||
|
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
|
||
|
*> the system:
|
||
|
*> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
|
||
|
*> Whether or not the system will be equilibrated depends on the
|
||
|
*> scaling of the matrix A, but if equilibration is used, A is
|
||
|
*> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
|
||
|
*>
|
||
|
*> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
|
||
|
*> factor the matrix A (after equilibration if FACT = 'E') as
|
||
|
*> A = U**T* U, if UPLO = 'U', or
|
||
|
*> A = L * L**T, if UPLO = 'L',
|
||
|
*> where U is an upper triangular matrix and L is a lower triangular
|
||
|
*> matrix.
|
||
|
*>
|
||
|
*> 3. If the leading principal minor of order i is not positive,
|
||
|
*> then the routine returns with INFO = i. Otherwise, the factored
|
||
|
*> form of A is used to estimate the condition number of the matrix
|
||
|
*> A. If the reciprocal of the condition number is less than machine
|
||
|
*> precision, INFO = N+1 is returned as a warning, but the routine
|
||
|
*> still goes on to solve for X and compute error bounds as
|
||
|
*> described below.
|
||
|
*>
|
||
|
*> 4. The system of equations is solved for X using the factored form
|
||
|
*> of A.
|
||
|
*>
|
||
|
*> 5. Iterative refinement is applied to improve the computed solution
|
||
|
*> matrix and calculate error bounds and backward error estimates
|
||
|
*> for it.
|
||
|
*>
|
||
|
*> 6. If equilibration was used, the matrix X is premultiplied by
|
||
|
*> diag(S) so that it solves the original system before
|
||
|
*> equilibration.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] FACT
|
||
|
*> \verbatim
|
||
|
*> FACT is CHARACTER*1
|
||
|
*> Specifies whether or not the factored form of the matrix A is
|
||
|
*> supplied on entry, and if not, whether the matrix A should be
|
||
|
*> equilibrated before it is factored.
|
||
|
*> = 'F': On entry, AF contains the factored form of A.
|
||
|
*> If EQUED = 'Y', the matrix A has been equilibrated
|
||
|
*> with scaling factors given by S. A and AF will not
|
||
|
*> be modified.
|
||
|
*> = 'N': The matrix A will be copied to AF and factored.
|
||
|
*> = 'E': The matrix A will be equilibrated if necessary, then
|
||
|
*> copied to AF and factored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangle of A is stored;
|
||
|
*> = 'L': Lower triangle of A is stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of linear equations, i.e., the order of the
|
||
|
*> matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrices B and X. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> On entry, the symmetric matrix A, except if FACT = 'F' and
|
||
|
*> EQUED = 'Y', then A must contain the equilibrated matrix
|
||
|
*> diag(S)*A*diag(S). If UPLO = 'U', the leading
|
||
|
*> N-by-N upper triangular part of A contains the upper
|
||
|
*> triangular part of the matrix A, and the strictly lower
|
||
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
||
|
*> leading N-by-N lower triangular part of A contains the lower
|
||
|
*> triangular part of the matrix A, and the strictly upper
|
||
|
*> triangular part of A is not referenced. A is not modified if
|
||
|
*> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
|
||
|
*>
|
||
|
*> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
|
||
|
*> diag(S)*A*diag(S).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] AF
|
||
|
*> \verbatim
|
||
|
*> AF is DOUBLE PRECISION array, dimension (LDAF,N)
|
||
|
*> If FACT = 'F', then AF is an input argument and on entry
|
||
|
*> contains the triangular factor U or L from the Cholesky
|
||
|
*> factorization A = U**T*U or A = L*L**T, in the same storage
|
||
|
*> format as A. If EQUED .ne. 'N', then AF is the factored form
|
||
|
*> of the equilibrated matrix diag(S)*A*diag(S).
|
||
|
*>
|
||
|
*> If FACT = 'N', then AF is an output argument and on exit
|
||
|
*> returns the triangular factor U or L from the Cholesky
|
||
|
*> factorization A = U**T*U or A = L*L**T of the original
|
||
|
*> matrix A.
|
||
|
*>
|
||
|
*> If FACT = 'E', then AF is an output argument and on exit
|
||
|
*> returns the triangular factor U or L from the Cholesky
|
||
|
*> factorization A = U**T*U or A = L*L**T of the equilibrated
|
||
|
*> matrix A (see the description of A for the form of the
|
||
|
*> equilibrated matrix).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAF
|
||
|
*> \verbatim
|
||
|
*> LDAF is INTEGER
|
||
|
*> The leading dimension of the array AF. LDAF >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] EQUED
|
||
|
*> \verbatim
|
||
|
*> EQUED is CHARACTER*1
|
||
|
*> Specifies the form of equilibration that was done.
|
||
|
*> = 'N': No equilibration (always true if FACT = 'N').
|
||
|
*> = 'Y': Equilibration was done, i.e., A has been replaced by
|
||
|
*> diag(S) * A * diag(S).
|
||
|
*> EQUED is an input argument if FACT = 'F'; otherwise, it is an
|
||
|
*> output argument.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] S
|
||
|
*> \verbatim
|
||
|
*> S is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The scale factors for A; not accessed if EQUED = 'N'. S is
|
||
|
*> an input argument if FACT = 'F'; otherwise, S is an output
|
||
|
*> argument. If FACT = 'F' and EQUED = 'Y', each element of S
|
||
|
*> must be positive.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
||
|
*> On entry, the N-by-NRHS right hand side matrix B.
|
||
|
*> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
|
||
|
*> B is overwritten by diag(S) * B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
|
||
|
*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
|
||
|
*> the original system of equations. Note that if EQUED = 'Y',
|
||
|
*> A and B are modified on exit, and the solution to the
|
||
|
*> equilibrated system is inv(diag(S))*X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The estimate of the reciprocal condition number of the matrix
|
||
|
*> A after equilibration (if done). If RCOND is less than the
|
||
|
*> machine precision (in particular, if RCOND = 0), the matrix
|
||
|
*> is singular to working precision. This condition is
|
||
|
*> indicated by a return code of INFO > 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] FERR
|
||
|
*> \verbatim
|
||
|
*> FERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The estimated forward error bound for each solution vector
|
||
|
*> X(j) (the j-th column of the solution matrix X).
|
||
|
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
|
||
|
*> is an estimated upper bound for the magnitude of the largest
|
||
|
*> element in (X(j) - XTRUE) divided by the magnitude of the
|
||
|
*> largest element in X(j). The estimate is as reliable as
|
||
|
*> the estimate for RCOND, and is almost always a slight
|
||
|
*> overestimate of the true error.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BERR
|
||
|
*> \verbatim
|
||
|
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The componentwise relative backward error of each solution
|
||
|
*> vector X(j) (i.e., the smallest relative change in
|
||
|
*> any element of A or B that makes X(j) an exact solution).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (3*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, and i is
|
||
|
*> <= N: the leading principal minor of order i of A
|
||
|
*> is not positive, so the factorization could not
|
||
|
*> be completed, and the solution has not been
|
||
|
*> computed. RCOND = 0 is returned.
|
||
|
*> = N+1: U is nonsingular, but RCOND is less than machine
|
||
|
*> precision, meaning that the matrix is singular
|
||
|
*> to working precision. Nevertheless, the
|
||
|
*> solution and error bounds are computed because
|
||
|
*> there are a number of situations where the
|
||
|
*> computed solution can be more accurate than the
|
||
|
*> value of RCOND would suggest.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doublePOsolve
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
|
||
|
$ S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
|
||
|
$ IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER EQUED, FACT, UPLO
|
||
|
INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
|
||
|
DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IWORK( * )
|
||
|
DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
|
||
|
$ BERR( * ), FERR( * ), S( * ), WORK( * ),
|
||
|
$ X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL EQUIL, NOFACT, RCEQU
|
||
|
INTEGER I, INFEQU, J
|
||
|
DOUBLE PRECISION AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, DLANSY
|
||
|
EXTERNAL LSAME, DLAMCH, DLANSY
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLACPY, DLAQSY, DPOCON, DPOEQU, DPORFS, DPOTRF,
|
||
|
$ DPOTRS, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
NOFACT = LSAME( FACT, 'N' )
|
||
|
EQUIL = LSAME( FACT, 'E' )
|
||
|
IF( NOFACT .OR. EQUIL ) THEN
|
||
|
EQUED = 'N'
|
||
|
RCEQU = .FALSE.
|
||
|
ELSE
|
||
|
RCEQU = LSAME( EQUED, 'Y' )
|
||
|
SMLNUM = DLAMCH( 'Safe minimum' )
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
END IF
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
|
||
|
$ THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
|
||
|
$ THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
|
||
|
$ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE
|
||
|
IF( RCEQU ) THEN
|
||
|
SMIN = BIGNUM
|
||
|
SMAX = ZERO
|
||
|
DO 10 J = 1, N
|
||
|
SMIN = MIN( SMIN, S( J ) )
|
||
|
SMAX = MAX( SMAX, S( J ) )
|
||
|
10 CONTINUE
|
||
|
IF( SMIN.LE.ZERO ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( N.GT.0 ) THEN
|
||
|
SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
|
||
|
ELSE
|
||
|
SCOND = ONE
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -14
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DPOSVX', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( EQUIL ) THEN
|
||
|
*
|
||
|
* Compute row and column scalings to equilibrate the matrix A.
|
||
|
*
|
||
|
CALL DPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
|
||
|
IF( INFEQU.EQ.0 ) THEN
|
||
|
*
|
||
|
* Equilibrate the matrix.
|
||
|
*
|
||
|
CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
|
||
|
RCEQU = LSAME( EQUED, 'Y' )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Scale the right hand side.
|
||
|
*
|
||
|
IF( RCEQU ) THEN
|
||
|
DO 30 J = 1, NRHS
|
||
|
DO 20 I = 1, N
|
||
|
B( I, J ) = S( I )*B( I, J )
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOFACT .OR. EQUIL ) THEN
|
||
|
*
|
||
|
* Compute the Cholesky factorization A = U**T *U or A = L*L**T.
|
||
|
*
|
||
|
CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
|
||
|
CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
|
||
|
*
|
||
|
* Return if INFO is non-zero.
|
||
|
*
|
||
|
IF( INFO.GT.0 )THEN
|
||
|
RCOND = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the norm of the matrix A.
|
||
|
*
|
||
|
ANORM = DLANSY( '1', UPLO, N, A, LDA, WORK )
|
||
|
*
|
||
|
* Compute the reciprocal of the condition number of A.
|
||
|
*
|
||
|
CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
|
||
|
*
|
||
|
* Compute the solution matrix X.
|
||
|
*
|
||
|
CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
|
||
|
CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
|
||
|
*
|
||
|
* Use iterative refinement to improve the computed solution and
|
||
|
* compute error bounds and backward error estimates for it.
|
||
|
*
|
||
|
CALL DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
|
||
|
$ FERR, BERR, WORK, IWORK, INFO )
|
||
|
*
|
||
|
* Transform the solution matrix X to a solution of the original
|
||
|
* system.
|
||
|
*
|
||
|
IF( RCEQU ) THEN
|
||
|
DO 50 J = 1, NRHS
|
||
|
DO 40 I = 1, N
|
||
|
X( I, J ) = S( I )*X( I, J )
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
DO 60 J = 1, NRHS
|
||
|
FERR( J ) = FERR( J ) / SCOND
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Set INFO = N+1 if the matrix is singular to working precision.
|
||
|
*
|
||
|
IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
|
||
|
$ INFO = N + 1
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DPOSVX
|
||
|
*
|
||
|
END
|