You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
278 lines
8.3 KiB
278 lines
8.3 KiB
2 years ago
|
*> \brief \b DSBGV
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DSBGV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgv.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgv.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgv.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
|
||
|
* LDZ, WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBZ, UPLO
|
||
|
* INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), W( * ),
|
||
|
* $ WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DSBGV computes all the eigenvalues, and optionally, the eigenvectors
|
||
|
*> of a real generalized symmetric-definite banded eigenproblem, of
|
||
|
*> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
|
||
|
*> and banded, and B is also positive definite.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBZ
|
||
|
*> \verbatim
|
||
|
*> JOBZ is CHARACTER*1
|
||
|
*> = 'N': Compute eigenvalues only;
|
||
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangles of A and B are stored;
|
||
|
*> = 'L': Lower triangles of A and B are stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KA
|
||
|
*> \verbatim
|
||
|
*> KA is INTEGER
|
||
|
*> The number of superdiagonals of the matrix A if UPLO = 'U',
|
||
|
*> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KB
|
||
|
*> \verbatim
|
||
|
*> KB is INTEGER
|
||
|
*> The number of superdiagonals of the matrix B if UPLO = 'U',
|
||
|
*> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] AB
|
||
|
*> \verbatim
|
||
|
*> AB is DOUBLE PRECISION array, dimension (LDAB, N)
|
||
|
*> On entry, the upper or lower triangle of the symmetric band
|
||
|
*> matrix A, stored in the first ka+1 rows of the array. The
|
||
|
*> j-th column of A is stored in the j-th column of the array AB
|
||
|
*> as follows:
|
||
|
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
|
||
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
|
||
|
*>
|
||
|
*> On exit, the contents of AB are destroyed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAB
|
||
|
*> \verbatim
|
||
|
*> LDAB is INTEGER
|
||
|
*> The leading dimension of the array AB. LDAB >= KA+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] BB
|
||
|
*> \verbatim
|
||
|
*> BB is DOUBLE PRECISION array, dimension (LDBB, N)
|
||
|
*> On entry, the upper or lower triangle of the symmetric band
|
||
|
*> matrix B, stored in the first kb+1 rows of the array. The
|
||
|
*> j-th column of B is stored in the j-th column of the array BB
|
||
|
*> as follows:
|
||
|
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
|
||
|
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
|
||
|
*>
|
||
|
*> On exit, the factor S from the split Cholesky factorization
|
||
|
*> B = S**T*S, as returned by DPBSTF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDBB
|
||
|
*> \verbatim
|
||
|
*> LDBB is INTEGER
|
||
|
*> The leading dimension of the array BB. LDBB >= KB+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is DOUBLE PRECISION array, dimension (N)
|
||
|
*> If INFO = 0, the eigenvalues in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
|
||
|
*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
|
||
|
*> eigenvectors, with the i-th column of Z holding the
|
||
|
*> eigenvector associated with W(i). The eigenvectors are
|
||
|
*> normalized so that Z**T*B*Z = I.
|
||
|
*> If JOBZ = 'N', then Z is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
||
|
*> JOBZ = 'V', LDZ >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (3*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, and i is:
|
||
|
*> <= N: the algorithm failed to converge:
|
||
|
*> i off-diagonal elements of an intermediate
|
||
|
*> tridiagonal form did not converge to zero;
|
||
|
*> > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF
|
||
|
*> returned INFO = i: B is not positive definite.
|
||
|
*> The factorization of B could not be completed and
|
||
|
*> no eigenvalues or eigenvectors were computed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHEReigen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
|
||
|
$ LDZ, WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBZ, UPLO
|
||
|
INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), W( * ),
|
||
|
$ WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL UPPER, WANTZ
|
||
|
CHARACTER VECT
|
||
|
INTEGER IINFO, INDE, INDWRK
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DPBSTF, DSBGST, DSBTRD, DSTEQR, DSTERF, XERBLA
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
WANTZ = LSAME( JOBZ, 'V' )
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( KA.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDAB.LT.KA+1 ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDBB.LT.KB+1 ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
|
||
|
INFO = -12
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DSBGV', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Form a split Cholesky factorization of B.
|
||
|
*
|
||
|
CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
INFO = N + INFO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Transform problem to standard eigenvalue problem.
|
||
|
*
|
||
|
INDE = 1
|
||
|
INDWRK = INDE + N
|
||
|
CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
|
||
|
$ WORK( INDWRK ), IINFO )
|
||
|
*
|
||
|
* Reduce to tridiagonal form.
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
VECT = 'U'
|
||
|
ELSE
|
||
|
VECT = 'N'
|
||
|
END IF
|
||
|
CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
|
||
|
$ WORK( INDWRK ), IINFO )
|
||
|
*
|
||
|
* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR.
|
||
|
*
|
||
|
IF( .NOT.WANTZ ) THEN
|
||
|
CALL DSTERF( N, W, WORK( INDE ), INFO )
|
||
|
ELSE
|
||
|
CALL DSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
|
||
|
$ INFO )
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DSBGV
|
||
|
*
|
||
|
END
|