You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
451 lines
13 KiB
451 lines
13 KiB
2 years ago
|
*> \brief \b DSTEIN
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DSTEIN + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstein.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstein.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstein.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
|
||
|
* IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDZ, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
|
||
|
* $ IWORK( * )
|
||
|
* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DSTEIN computes the eigenvectors of a real symmetric tridiagonal
|
||
|
*> matrix T corresponding to specified eigenvalues, using inverse
|
||
|
*> iteration.
|
||
|
*>
|
||
|
*> The maximum number of iterations allowed for each eigenvector is
|
||
|
*> specified by an internal parameter MAXITS (currently set to 5).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The n diagonal elements of the tridiagonal matrix T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> The (n-1) subdiagonal elements of the tridiagonal matrix
|
||
|
*> T, in elements 1 to N-1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of eigenvectors to be found. 0 <= M <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] W
|
||
|
*> \verbatim
|
||
|
*> W is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The first M elements of W contain the eigenvalues for
|
||
|
*> which eigenvectors are to be computed. The eigenvalues
|
||
|
*> should be grouped by split-off block and ordered from
|
||
|
*> smallest to largest within the block. ( The output array
|
||
|
*> W from DSTEBZ with ORDER = 'B' is expected here. )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IBLOCK
|
||
|
*> \verbatim
|
||
|
*> IBLOCK is INTEGER array, dimension (N)
|
||
|
*> The submatrix indices associated with the corresponding
|
||
|
*> eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
|
||
|
*> the first submatrix from the top, =2 if W(i) belongs to
|
||
|
*> the second submatrix, etc. ( The output array IBLOCK
|
||
|
*> from DSTEBZ is expected here. )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ISPLIT
|
||
|
*> \verbatim
|
||
|
*> ISPLIT is INTEGER array, dimension (N)
|
||
|
*> The splitting points, at which T breaks up into submatrices.
|
||
|
*> The first submatrix consists of rows/columns 1 to
|
||
|
*> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
|
||
|
*> through ISPLIT( 2 ), etc.
|
||
|
*> ( The output array ISPLIT from DSTEBZ is expected here. )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension (LDZ, M)
|
||
|
*> The computed eigenvectors. The eigenvector associated
|
||
|
*> with the eigenvalue W(i) is stored in the i-th column of
|
||
|
*> Z. Any vector which fails to converge is set to its current
|
||
|
*> iterate after MAXITS iterations.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (5*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IFAIL
|
||
|
*> \verbatim
|
||
|
*> IFAIL is INTEGER array, dimension (M)
|
||
|
*> On normal exit, all elements of IFAIL are zero.
|
||
|
*> If one or more eigenvectors fail to converge after
|
||
|
*> MAXITS iterations, then their indices are stored in
|
||
|
*> array IFAIL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, then i eigenvectors failed to converge
|
||
|
*> in MAXITS iterations. Their indices are stored in
|
||
|
*> array IFAIL.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Internal Parameters:
|
||
|
* =========================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*> MAXITS INTEGER, default = 5
|
||
|
*> The maximum number of iterations performed.
|
||
|
*>
|
||
|
*> EXTRA INTEGER, default = 2
|
||
|
*> The number of iterations performed after norm growth
|
||
|
*> criterion is satisfied, should be at least 1.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
|
||
|
$ IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDZ, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
|
||
|
$ IWORK( * )
|
||
|
DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE, TEN, ODM3, ODM1
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
|
||
|
$ ODM3 = 1.0D-3, ODM1 = 1.0D-1 )
|
||
|
INTEGER MAXITS, EXTRA
|
||
|
PARAMETER ( MAXITS = 5, EXTRA = 2 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
|
||
|
$ INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
|
||
|
$ JBLK, JMAX, NBLK, NRMCHK
|
||
|
DOUBLE PRECISION DTPCRT, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
|
||
|
$ SCL, SEP, TOL, XJ, XJM, ZTR
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER IDAMAX
|
||
|
DOUBLE PRECISION DDOT, DLAMCH, DNRM2
|
||
|
EXTERNAL IDAMAX, DDOT, DLAMCH, DNRM2
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DAXPY, DCOPY, DLAGTF, DLAGTS, DLARNV, DSCAL,
|
||
|
$ XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
DO 10 I = 1, M
|
||
|
IFAIL( I ) = 0
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
IF( N.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE
|
||
|
DO 20 J = 2, M
|
||
|
IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
|
||
|
INFO = -6
|
||
|
GO TO 30
|
||
|
END IF
|
||
|
IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
|
||
|
$ THEN
|
||
|
INFO = -5
|
||
|
GO TO 30
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DSTEIN', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 .OR. M.EQ.0 ) THEN
|
||
|
RETURN
|
||
|
ELSE IF( N.EQ.1 ) THEN
|
||
|
Z( 1, 1 ) = ONE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants.
|
||
|
*
|
||
|
EPS = DLAMCH( 'Precision' )
|
||
|
*
|
||
|
* Initialize seed for random number generator DLARNV.
|
||
|
*
|
||
|
DO 40 I = 1, 4
|
||
|
ISEED( I ) = 1
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Initialize pointers.
|
||
|
*
|
||
|
INDRV1 = 0
|
||
|
INDRV2 = INDRV1 + N
|
||
|
INDRV3 = INDRV2 + N
|
||
|
INDRV4 = INDRV3 + N
|
||
|
INDRV5 = INDRV4 + N
|
||
|
*
|
||
|
* Compute eigenvectors of matrix blocks.
|
||
|
*
|
||
|
J1 = 1
|
||
|
DO 160 NBLK = 1, IBLOCK( M )
|
||
|
*
|
||
|
* Find starting and ending indices of block nblk.
|
||
|
*
|
||
|
IF( NBLK.EQ.1 ) THEN
|
||
|
B1 = 1
|
||
|
ELSE
|
||
|
B1 = ISPLIT( NBLK-1 ) + 1
|
||
|
END IF
|
||
|
BN = ISPLIT( NBLK )
|
||
|
BLKSIZ = BN - B1 + 1
|
||
|
IF( BLKSIZ.EQ.1 )
|
||
|
$ GO TO 60
|
||
|
GPIND = J1
|
||
|
*
|
||
|
* Compute reorthogonalization criterion and stopping criterion.
|
||
|
*
|
||
|
ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
|
||
|
ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
|
||
|
DO 50 I = B1 + 1, BN - 1
|
||
|
ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
|
||
|
$ ABS( E( I ) ) )
|
||
|
50 CONTINUE
|
||
|
ORTOL = ODM3*ONENRM
|
||
|
*
|
||
|
DTPCRT = SQRT( ODM1 / BLKSIZ )
|
||
|
*
|
||
|
* Loop through eigenvalues of block nblk.
|
||
|
*
|
||
|
60 CONTINUE
|
||
|
JBLK = 0
|
||
|
DO 150 J = J1, M
|
||
|
IF( IBLOCK( J ).NE.NBLK ) THEN
|
||
|
J1 = J
|
||
|
GO TO 160
|
||
|
END IF
|
||
|
JBLK = JBLK + 1
|
||
|
XJ = W( J )
|
||
|
*
|
||
|
* Skip all the work if the block size is one.
|
||
|
*
|
||
|
IF( BLKSIZ.EQ.1 ) THEN
|
||
|
WORK( INDRV1+1 ) = ONE
|
||
|
GO TO 120
|
||
|
END IF
|
||
|
*
|
||
|
* If eigenvalues j and j-1 are too close, add a relatively
|
||
|
* small perturbation.
|
||
|
*
|
||
|
IF( JBLK.GT.1 ) THEN
|
||
|
EPS1 = ABS( EPS*XJ )
|
||
|
PERTOL = TEN*EPS1
|
||
|
SEP = XJ - XJM
|
||
|
IF( SEP.LT.PERTOL )
|
||
|
$ XJ = XJM + PERTOL
|
||
|
END IF
|
||
|
*
|
||
|
ITS = 0
|
||
|
NRMCHK = 0
|
||
|
*
|
||
|
* Get random starting vector.
|
||
|
*
|
||
|
CALL DLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
|
||
|
*
|
||
|
* Copy the matrix T so it won't be destroyed in factorization.
|
||
|
*
|
||
|
CALL DCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
|
||
|
CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
|
||
|
CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
|
||
|
*
|
||
|
* Compute LU factors with partial pivoting ( PT = LU )
|
||
|
*
|
||
|
TOL = ZERO
|
||
|
CALL DLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
|
||
|
$ WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
|
||
|
$ IINFO )
|
||
|
*
|
||
|
* Update iteration count.
|
||
|
*
|
||
|
70 CONTINUE
|
||
|
ITS = ITS + 1
|
||
|
IF( ITS.GT.MAXITS )
|
||
|
$ GO TO 100
|
||
|
*
|
||
|
* Normalize and scale the righthand side vector Pb.
|
||
|
*
|
||
|
JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
|
||
|
SCL = BLKSIZ*ONENRM*MAX( EPS,
|
||
|
$ ABS( WORK( INDRV4+BLKSIZ ) ) ) /
|
||
|
$ ABS( WORK( INDRV1+JMAX ) )
|
||
|
CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
|
||
|
*
|
||
|
* Solve the system LU = Pb.
|
||
|
*
|
||
|
CALL DLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
|
||
|
$ WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
|
||
|
$ WORK( INDRV1+1 ), TOL, IINFO )
|
||
|
*
|
||
|
* Reorthogonalize by modified Gram-Schmidt if eigenvalues are
|
||
|
* close enough.
|
||
|
*
|
||
|
IF( JBLK.EQ.1 )
|
||
|
$ GO TO 90
|
||
|
IF( ABS( XJ-XJM ).GT.ORTOL )
|
||
|
$ GPIND = J
|
||
|
IF( GPIND.NE.J ) THEN
|
||
|
DO 80 I = GPIND, J - 1
|
||
|
ZTR = -DDOT( BLKSIZ, WORK( INDRV1+1 ), 1, Z( B1, I ),
|
||
|
$ 1 )
|
||
|
CALL DAXPY( BLKSIZ, ZTR, Z( B1, I ), 1,
|
||
|
$ WORK( INDRV1+1 ), 1 )
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Check the infinity norm of the iterate.
|
||
|
*
|
||
|
90 CONTINUE
|
||
|
JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
|
||
|
NRM = ABS( WORK( INDRV1+JMAX ) )
|
||
|
*
|
||
|
* Continue for additional iterations after norm reaches
|
||
|
* stopping criterion.
|
||
|
*
|
||
|
IF( NRM.LT.DTPCRT )
|
||
|
$ GO TO 70
|
||
|
NRMCHK = NRMCHK + 1
|
||
|
IF( NRMCHK.LT.EXTRA+1 )
|
||
|
$ GO TO 70
|
||
|
*
|
||
|
GO TO 110
|
||
|
*
|
||
|
* If stopping criterion was not satisfied, update info and
|
||
|
* store eigenvector number in array ifail.
|
||
|
*
|
||
|
100 CONTINUE
|
||
|
INFO = INFO + 1
|
||
|
IFAIL( INFO ) = J
|
||
|
*
|
||
|
* Accept iterate as jth eigenvector.
|
||
|
*
|
||
|
110 CONTINUE
|
||
|
SCL = ONE / DNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
|
||
|
JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
|
||
|
IF( WORK( INDRV1+JMAX ).LT.ZERO )
|
||
|
$ SCL = -SCL
|
||
|
CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
|
||
|
120 CONTINUE
|
||
|
DO 130 I = 1, N
|
||
|
Z( I, J ) = ZERO
|
||
|
130 CONTINUE
|
||
|
DO 140 I = 1, BLKSIZ
|
||
|
Z( B1+I-1, J ) = WORK( INDRV1+I )
|
||
|
140 CONTINUE
|
||
|
*
|
||
|
* Save the shift to check eigenvalue spacing at next
|
||
|
* iteration.
|
||
|
*
|
||
|
XJM = XJ
|
||
|
*
|
||
|
150 CONTINUE
|
||
|
160 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DSTEIN
|
||
|
*
|
||
|
END
|