You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
294 lines
8.4 KiB
294 lines
8.4 KiB
2 years ago
|
*> \brief <b> DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DSTEVD + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevd.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevd.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevd.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
|
||
|
* LIWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBZ
|
||
|
* INTEGER INFO, LDZ, LIWORK, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IWORK( * )
|
||
|
* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
|
||
|
*> real symmetric tridiagonal matrix. If eigenvectors are desired, it
|
||
|
*> uses a divide and conquer algorithm.
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBZ
|
||
|
*> \verbatim
|
||
|
*> JOBZ is CHARACTER*1
|
||
|
*> = 'N': Compute eigenvalues only;
|
||
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, the n diagonal elements of the tridiagonal matrix
|
||
|
*> A.
|
||
|
*> On exit, if INFO = 0, the eigenvalues in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] E
|
||
|
*> \verbatim
|
||
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> On entry, the (n-1) subdiagonal elements of the tridiagonal
|
||
|
*> matrix A, stored in elements 1 to N-1 of E.
|
||
|
*> On exit, the contents of E are destroyed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
|
||
|
*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
|
||
|
*> eigenvectors of the matrix A, with the i-th column of Z
|
||
|
*> holding the eigenvector associated with D(i).
|
||
|
*> If JOBZ = 'N', then Z is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
||
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array,
|
||
|
*> dimension (LWORK)
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK.
|
||
|
*> If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
|
||
|
*> If JOBZ = 'V' and N > 1 then LWORK must be at least
|
||
|
*> ( 1 + 4*N + N**2 ).
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal sizes of the WORK and IWORK
|
||
|
*> arrays, returns these values as the first entries of the WORK
|
||
|
*> and IWORK arrays, and no error message related to LWORK or
|
||
|
*> LIWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
|
||
|
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LIWORK
|
||
|
*> \verbatim
|
||
|
*> LIWORK is INTEGER
|
||
|
*> The dimension of the array IWORK.
|
||
|
*> If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
|
||
|
*> If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
|
||
|
*>
|
||
|
*> If LIWORK = -1, then a workspace query is assumed; the
|
||
|
*> routine only calculates the optimal sizes of the WORK and
|
||
|
*> IWORK arrays, returns these values as the first entries of
|
||
|
*> the WORK and IWORK arrays, and no error message related to
|
||
|
*> LWORK or LIWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, the algorithm failed to converge; i
|
||
|
*> off-diagonal elements of E did not converge to zero.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHEReigen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
|
||
|
$ LIWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBZ
|
||
|
INTEGER INFO, LDZ, LIWORK, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IWORK( * )
|
||
|
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY, WANTZ
|
||
|
INTEGER ISCALE, LIWMIN, LWMIN
|
||
|
DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
|
||
|
$ TNRM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, DLANST
|
||
|
EXTERNAL LSAME, DLAMCH, DLANST
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DSCAL, DSTEDC, DSTERF, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
WANTZ = LSAME( JOBZ, 'V' )
|
||
|
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
|
||
|
*
|
||
|
INFO = 0
|
||
|
LIWMIN = 1
|
||
|
LWMIN = 1
|
||
|
IF( N.GT.1 .AND. WANTZ ) THEN
|
||
|
LWMIN = 1 + 4*N + N**2
|
||
|
LIWMIN = 3 + 5*N
|
||
|
END IF
|
||
|
*
|
||
|
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
|
||
|
INFO = -6
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
WORK( 1 ) = LWMIN
|
||
|
IWORK( 1 ) = LIWMIN
|
||
|
*
|
||
|
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -10
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DSTEVD', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
IF( WANTZ )
|
||
|
$ Z( 1, 1 ) = ONE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants.
|
||
|
*
|
||
|
SAFMIN = DLAMCH( 'Safe minimum' )
|
||
|
EPS = DLAMCH( 'Precision' )
|
||
|
SMLNUM = SAFMIN / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
RMIN = SQRT( SMLNUM )
|
||
|
RMAX = SQRT( BIGNUM )
|
||
|
*
|
||
|
* Scale matrix to allowable range, if necessary.
|
||
|
*
|
||
|
ISCALE = 0
|
||
|
TNRM = DLANST( 'M', N, D, E )
|
||
|
IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
|
||
|
ISCALE = 1
|
||
|
SIGMA = RMIN / TNRM
|
||
|
ELSE IF( TNRM.GT.RMAX ) THEN
|
||
|
ISCALE = 1
|
||
|
SIGMA = RMAX / TNRM
|
||
|
END IF
|
||
|
IF( ISCALE.EQ.1 ) THEN
|
||
|
CALL DSCAL( N, SIGMA, D, 1 )
|
||
|
CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* For eigenvalues only, call DSTERF. For eigenvalues and
|
||
|
* eigenvectors, call DSTEDC.
|
||
|
*
|
||
|
IF( .NOT.WANTZ ) THEN
|
||
|
CALL DSTERF( N, D, E, INFO )
|
||
|
ELSE
|
||
|
CALL DSTEDC( 'I', N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
|
||
|
$ INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* If matrix was scaled, then rescale eigenvalues appropriately.
|
||
|
*
|
||
|
IF( ISCALE.EQ.1 )
|
||
|
$ CALL DSCAL( N, ONE / SIGMA, D, 1 )
|
||
|
*
|
||
|
WORK( 1 ) = LWMIN
|
||
|
IWORK( 1 ) = LIWMIN
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DSTEVD
|
||
|
*
|
||
|
END
|