You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
680 lines
22 KiB
680 lines
22 KiB
2 years ago
|
*> \brief \b DTGSYL
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DTGSYL + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsyl.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsyl.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsyl.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
|
||
|
* LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
|
||
|
* IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANS
|
||
|
* INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
|
||
|
* $ LWORK, M, N
|
||
|
* DOUBLE PRECISION DIF, SCALE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IWORK( * )
|
||
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
||
|
* $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
|
||
|
* $ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DTGSYL solves the generalized Sylvester equation:
|
||
|
*>
|
||
|
*> A * R - L * B = scale * C (1)
|
||
|
*> D * R - L * E = scale * F
|
||
|
*>
|
||
|
*> where R and L are unknown m-by-n matrices, (A, D), (B, E) and
|
||
|
*> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
|
||
|
*> respectively, with real entries. (A, D) and (B, E) must be in
|
||
|
*> generalized (real) Schur canonical form, i.e. A, B are upper quasi
|
||
|
*> triangular and D, E are upper triangular.
|
||
|
*>
|
||
|
*> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
|
||
|
*> scaling factor chosen to avoid overflow.
|
||
|
*>
|
||
|
*> In matrix notation (1) is equivalent to solve Zx = scale b, where
|
||
|
*> Z is defined as
|
||
|
*>
|
||
|
*> Z = [ kron(In, A) -kron(B**T, Im) ] (2)
|
||
|
*> [ kron(In, D) -kron(E**T, Im) ].
|
||
|
*>
|
||
|
*> Here Ik is the identity matrix of size k and X**T is the transpose of
|
||
|
*> X. kron(X, Y) is the Kronecker product between the matrices X and Y.
|
||
|
*>
|
||
|
*> If TRANS = 'T', DTGSYL solves the transposed system Z**T*y = scale*b,
|
||
|
*> which is equivalent to solve for R and L in
|
||
|
*>
|
||
|
*> A**T * R + D**T * L = scale * C (3)
|
||
|
*> R * B**T + L * E**T = scale * -F
|
||
|
*>
|
||
|
*> This case (TRANS = 'T') is used to compute an one-norm-based estimate
|
||
|
*> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
|
||
|
*> and (B,E), using DLACON.
|
||
|
*>
|
||
|
*> If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
|
||
|
*> of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
|
||
|
*> reciprocal of the smallest singular value of Z. See [1-2] for more
|
||
|
*> information.
|
||
|
*>
|
||
|
*> This is a level 3 BLAS algorithm.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> = 'N': solve the generalized Sylvester equation (1).
|
||
|
*> = 'T': solve the 'transposed' system (3).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IJOB
|
||
|
*> \verbatim
|
||
|
*> IJOB is INTEGER
|
||
|
*> Specifies what kind of functionality to be performed.
|
||
|
*> = 0: solve (1) only.
|
||
|
*> = 1: The functionality of 0 and 3.
|
||
|
*> = 2: The functionality of 0 and 4.
|
||
|
*> = 3: Only an estimate of Dif[(A,D), (B,E)] is computed.
|
||
|
*> (look ahead strategy IJOB = 1 is used).
|
||
|
*> = 4: Only an estimate of Dif[(A,D), (B,E)] is computed.
|
||
|
*> ( DGECON on sub-systems is used ).
|
||
|
*> Not referenced if TRANS = 'T'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The order of the matrices A and D, and the row dimension of
|
||
|
*> the matrices C, F, R and L.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices B and E, and the column dimension
|
||
|
*> of the matrices C, F, R and L.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA, M)
|
||
|
*> The upper quasi triangular matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB, N)
|
||
|
*> The upper quasi triangular matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1, N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension (LDC, N)
|
||
|
*> On entry, C contains the right-hand-side of the first matrix
|
||
|
*> equation in (1) or (3).
|
||
|
*> On exit, if IJOB = 0, 1 or 2, C has been overwritten by
|
||
|
*> the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
|
||
|
*> the solution achieved during the computation of the
|
||
|
*> Dif-estimate.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDC
|
||
|
*> \verbatim
|
||
|
*> LDC is INTEGER
|
||
|
*> The leading dimension of the array C. LDC >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (LDD, M)
|
||
|
*> The upper triangular matrix D.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDD
|
||
|
*> \verbatim
|
||
|
*> LDD is INTEGER
|
||
|
*> The leading dimension of the array D. LDD >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is DOUBLE PRECISION array, dimension (LDE, N)
|
||
|
*> The upper triangular matrix E.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDE
|
||
|
*> \verbatim
|
||
|
*> LDE is INTEGER
|
||
|
*> The leading dimension of the array E. LDE >= max(1, N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] F
|
||
|
*> \verbatim
|
||
|
*> F is DOUBLE PRECISION array, dimension (LDF, N)
|
||
|
*> On entry, F contains the right-hand-side of the second matrix
|
||
|
*> equation in (1) or (3).
|
||
|
*> On exit, if IJOB = 0, 1 or 2, F has been overwritten by
|
||
|
*> the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
|
||
|
*> the solution achieved during the computation of the
|
||
|
*> Dif-estimate.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDF
|
||
|
*> \verbatim
|
||
|
*> LDF is INTEGER
|
||
|
*> The leading dimension of the array F. LDF >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] DIF
|
||
|
*> \verbatim
|
||
|
*> DIF is DOUBLE PRECISION
|
||
|
*> On exit DIF is the reciprocal of a lower bound of the
|
||
|
*> reciprocal of the Dif-function, i.e. DIF is an upper bound of
|
||
|
*> Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
|
||
|
*> IF IJOB = 0 or TRANS = 'T', DIF is not touched.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SCALE
|
||
|
*> \verbatim
|
||
|
*> SCALE is DOUBLE PRECISION
|
||
|
*> On exit SCALE is the scaling factor in (1) or (3).
|
||
|
*> If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
|
||
|
*> to a slightly perturbed system but the input matrices A, B, D
|
||
|
*> and E have not been changed. If SCALE = 0, C and F hold the
|
||
|
*> solutions R and L, respectively, to the homogeneous system
|
||
|
*> with C = F = 0. Normally, SCALE = 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK > = 1.
|
||
|
*> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (M+N+6)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> =0: successful exit
|
||
|
*> <0: If INFO = -i, the i-th argument had an illegal value.
|
||
|
*> >0: (A, D) and (B, E) have common or close eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleSYcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
||
|
*> Umea University, S-901 87 Umea, Sweden.
|
||
|
*
|
||
|
*> \par References:
|
||
|
* ================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
|
||
|
*> for Solving the Generalized Sylvester Equation and Estimating the
|
||
|
*> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
|
||
|
*> Department of Computing Science, Umea University, S-901 87 Umea,
|
||
|
*> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
|
||
|
*> Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
|
||
|
*> No 1, 1996.
|
||
|
*>
|
||
|
*> [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
|
||
|
*> Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
|
||
|
*> Appl., 15(4):1045-1060, 1994
|
||
|
*>
|
||
|
*> [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
|
||
|
*> Condition Estimators for Solving the Generalized Sylvester
|
||
|
*> Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
|
||
|
*> July 1989, pp 745-751.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
|
||
|
$ LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
|
||
|
$ IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANS
|
||
|
INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
|
||
|
$ LWORK, M, N
|
||
|
DOUBLE PRECISION DIF, SCALE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IWORK( * )
|
||
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
||
|
$ D( LDD, * ), E( LDE, * ), F( LDF, * ),
|
||
|
$ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
* Replaced various illegal calls to DCOPY by calls to DLASET.
|
||
|
* Sven Hammarling, 1/5/02.
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY, NOTRAN
|
||
|
INTEGER I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
|
||
|
$ LINFO, LWMIN, MB, NB, P, PPQQ, PQ, Q
|
||
|
DOUBLE PRECISION DSCALE, DSUM, SCALE2, SCALOC
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL LSAME, ILAENV
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DGEMM, DLACPY, DLASET, DSCAL, DTGSY2, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE, MAX, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Decode and test input parameters
|
||
|
*
|
||
|
INFO = 0
|
||
|
NOTRAN = LSAME( TRANS, 'N' )
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
*
|
||
|
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( NOTRAN ) THEN
|
||
|
IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
|
||
|
INFO = -2
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( M.LE.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LE.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -14
|
||
|
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -16
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( NOTRAN ) THEN
|
||
|
IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
|
||
|
LWMIN = MAX( 1, 2*M*N )
|
||
|
ELSE
|
||
|
LWMIN = 1
|
||
|
END IF
|
||
|
ELSE
|
||
|
LWMIN = 1
|
||
|
END IF
|
||
|
WORK( 1 ) = LWMIN
|
||
|
*
|
||
|
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -20
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DTGSYL', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
|
||
|
SCALE = 1
|
||
|
IF( NOTRAN ) THEN
|
||
|
IF( IJOB.NE.0 ) THEN
|
||
|
DIF = 0
|
||
|
END IF
|
||
|
END IF
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Determine optimal block sizes MB and NB
|
||
|
*
|
||
|
MB = ILAENV( 2, 'DTGSYL', TRANS, M, N, -1, -1 )
|
||
|
NB = ILAENV( 5, 'DTGSYL', TRANS, M, N, -1, -1 )
|
||
|
*
|
||
|
ISOLVE = 1
|
||
|
IFUNC = 0
|
||
|
IF( NOTRAN ) THEN
|
||
|
IF( IJOB.GE.3 ) THEN
|
||
|
IFUNC = IJOB - 2
|
||
|
CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
|
||
|
CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
|
||
|
ELSE IF( IJOB.GE.1 ) THEN
|
||
|
ISOLVE = 2
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
|
||
|
$ THEN
|
||
|
*
|
||
|
DO 30 IROUND = 1, ISOLVE
|
||
|
*
|
||
|
* Use unblocked Level 2 solver
|
||
|
*
|
||
|
DSCALE = ZERO
|
||
|
DSUM = ONE
|
||
|
PQ = 0
|
||
|
CALL DTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
|
||
|
$ LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
|
||
|
$ IWORK, PQ, INFO )
|
||
|
IF( DSCALE.NE.ZERO ) THEN
|
||
|
IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
|
||
|
DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
|
||
|
ELSE
|
||
|
DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
|
||
|
IF( NOTRAN ) THEN
|
||
|
IFUNC = IJOB
|
||
|
END IF
|
||
|
SCALE2 = SCALE
|
||
|
CALL DLACPY( 'F', M, N, C, LDC, WORK, M )
|
||
|
CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
|
||
|
CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
|
||
|
CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
|
||
|
ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
|
||
|
CALL DLACPY( 'F', M, N, WORK, M, C, LDC )
|
||
|
CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
|
||
|
SCALE = SCALE2
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Determine block structure of A
|
||
|
*
|
||
|
P = 0
|
||
|
I = 1
|
||
|
40 CONTINUE
|
||
|
IF( I.GT.M )
|
||
|
$ GO TO 50
|
||
|
P = P + 1
|
||
|
IWORK( P ) = I
|
||
|
I = I + MB
|
||
|
IF( I.GE.M )
|
||
|
$ GO TO 50
|
||
|
IF( A( I, I-1 ).NE.ZERO )
|
||
|
$ I = I + 1
|
||
|
GO TO 40
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
IWORK( P+1 ) = M + 1
|
||
|
IF( IWORK( P ).EQ.IWORK( P+1 ) )
|
||
|
$ P = P - 1
|
||
|
*
|
||
|
* Determine block structure of B
|
||
|
*
|
||
|
Q = P + 1
|
||
|
J = 1
|
||
|
60 CONTINUE
|
||
|
IF( J.GT.N )
|
||
|
$ GO TO 70
|
||
|
Q = Q + 1
|
||
|
IWORK( Q ) = J
|
||
|
J = J + NB
|
||
|
IF( J.GE.N )
|
||
|
$ GO TO 70
|
||
|
IF( B( J, J-1 ).NE.ZERO )
|
||
|
$ J = J + 1
|
||
|
GO TO 60
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
IWORK( Q+1 ) = N + 1
|
||
|
IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
|
||
|
$ Q = Q - 1
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
*
|
||
|
DO 150 IROUND = 1, ISOLVE
|
||
|
*
|
||
|
* Solve (I, J)-subsystem
|
||
|
* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
|
||
|
* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
|
||
|
* for I = P, P - 1,..., 1; J = 1, 2,..., Q
|
||
|
*
|
||
|
DSCALE = ZERO
|
||
|
DSUM = ONE
|
||
|
PQ = 0
|
||
|
SCALE = ONE
|
||
|
DO 130 J = P + 2, Q
|
||
|
JS = IWORK( J )
|
||
|
JE = IWORK( J+1 ) - 1
|
||
|
NB = JE - JS + 1
|
||
|
DO 120 I = P, 1, -1
|
||
|
IS = IWORK( I )
|
||
|
IE = IWORK( I+1 ) - 1
|
||
|
MB = IE - IS + 1
|
||
|
PPQQ = 0
|
||
|
CALL DTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
|
||
|
$ B( JS, JS ), LDB, C( IS, JS ), LDC,
|
||
|
$ D( IS, IS ), LDD, E( JS, JS ), LDE,
|
||
|
$ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
|
||
|
$ IWORK( Q+2 ), PPQQ, LINFO )
|
||
|
IF( LINFO.GT.0 )
|
||
|
$ INFO = LINFO
|
||
|
*
|
||
|
PQ = PQ + PPQQ
|
||
|
IF( SCALOC.NE.ONE ) THEN
|
||
|
DO 80 K = 1, JS - 1
|
||
|
CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
|
||
|
CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
|
||
|
80 CONTINUE
|
||
|
DO 90 K = JS, JE
|
||
|
CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 )
|
||
|
CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 )
|
||
|
90 CONTINUE
|
||
|
DO 100 K = JS, JE
|
||
|
CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 )
|
||
|
CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 )
|
||
|
100 CONTINUE
|
||
|
DO 110 K = JE + 1, N
|
||
|
CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
|
||
|
CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
|
||
|
110 CONTINUE
|
||
|
SCALE = SCALE*SCALOC
|
||
|
END IF
|
||
|
*
|
||
|
* Substitute R(I, J) and L(I, J) into remaining
|
||
|
* equation.
|
||
|
*
|
||
|
IF( I.GT.1 ) THEN
|
||
|
CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
|
||
|
$ A( 1, IS ), LDA, C( IS, JS ), LDC, ONE,
|
||
|
$ C( 1, JS ), LDC )
|
||
|
CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
|
||
|
$ D( 1, IS ), LDD, C( IS, JS ), LDC, ONE,
|
||
|
$ F( 1, JS ), LDF )
|
||
|
END IF
|
||
|
IF( J.LT.Q ) THEN
|
||
|
CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE,
|
||
|
$ F( IS, JS ), LDF, B( JS, JE+1 ), LDB,
|
||
|
$ ONE, C( IS, JE+1 ), LDC )
|
||
|
CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE,
|
||
|
$ F( IS, JS ), LDF, E( JS, JE+1 ), LDE,
|
||
|
$ ONE, F( IS, JE+1 ), LDF )
|
||
|
END IF
|
||
|
120 CONTINUE
|
||
|
130 CONTINUE
|
||
|
IF( DSCALE.NE.ZERO ) THEN
|
||
|
IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
|
||
|
DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
|
||
|
ELSE
|
||
|
DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
|
||
|
IF( NOTRAN ) THEN
|
||
|
IFUNC = IJOB
|
||
|
END IF
|
||
|
SCALE2 = SCALE
|
||
|
CALL DLACPY( 'F', M, N, C, LDC, WORK, M )
|
||
|
CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
|
||
|
CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
|
||
|
CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
|
||
|
ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
|
||
|
CALL DLACPY( 'F', M, N, WORK, M, C, LDC )
|
||
|
CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
|
||
|
SCALE = SCALE2
|
||
|
END IF
|
||
|
150 CONTINUE
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Solve transposed (I, J)-subsystem
|
||
|
* A(I, I)**T * R(I, J) + D(I, I)**T * L(I, J) = C(I, J)
|
||
|
* R(I, J) * B(J, J)**T + L(I, J) * E(J, J)**T = -F(I, J)
|
||
|
* for I = 1,2,..., P; J = Q, Q-1,..., 1
|
||
|
*
|
||
|
SCALE = ONE
|
||
|
DO 210 I = 1, P
|
||
|
IS = IWORK( I )
|
||
|
IE = IWORK( I+1 ) - 1
|
||
|
MB = IE - IS + 1
|
||
|
DO 200 J = Q, P + 2, -1
|
||
|
JS = IWORK( J )
|
||
|
JE = IWORK( J+1 ) - 1
|
||
|
NB = JE - JS + 1
|
||
|
CALL DTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
|
||
|
$ B( JS, JS ), LDB, C( IS, JS ), LDC,
|
||
|
$ D( IS, IS ), LDD, E( JS, JS ), LDE,
|
||
|
$ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
|
||
|
$ IWORK( Q+2 ), PPQQ, LINFO )
|
||
|
IF( LINFO.GT.0 )
|
||
|
$ INFO = LINFO
|
||
|
IF( SCALOC.NE.ONE ) THEN
|
||
|
DO 160 K = 1, JS - 1
|
||
|
CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
|
||
|
CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
|
||
|
160 CONTINUE
|
||
|
DO 170 K = JS, JE
|
||
|
CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 )
|
||
|
CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 )
|
||
|
170 CONTINUE
|
||
|
DO 180 K = JS, JE
|
||
|
CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 )
|
||
|
CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 )
|
||
|
180 CONTINUE
|
||
|
DO 190 K = JE + 1, N
|
||
|
CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
|
||
|
CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
|
||
|
190 CONTINUE
|
||
|
SCALE = SCALE*SCALOC
|
||
|
END IF
|
||
|
*
|
||
|
* Substitute R(I, J) and L(I, J) into remaining equation.
|
||
|
*
|
||
|
IF( J.GT.P+2 ) THEN
|
||
|
CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, C( IS, JS ),
|
||
|
$ LDC, B( 1, JS ), LDB, ONE, F( IS, 1 ),
|
||
|
$ LDF )
|
||
|
CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, F( IS, JS ),
|
||
|
$ LDF, E( 1, JS ), LDE, ONE, F( IS, 1 ),
|
||
|
$ LDF )
|
||
|
END IF
|
||
|
IF( I.LT.P ) THEN
|
||
|
CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
|
||
|
$ A( IS, IE+1 ), LDA, C( IS, JS ), LDC, ONE,
|
||
|
$ C( IE+1, JS ), LDC )
|
||
|
CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
|
||
|
$ D( IS, IE+1 ), LDD, F( IS, JS ), LDF, ONE,
|
||
|
$ C( IE+1, JS ), LDC )
|
||
|
END IF
|
||
|
200 CONTINUE
|
||
|
210 CONTINUE
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
WORK( 1 ) = LWMIN
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DTGSYL
|
||
|
*
|
||
|
END
|