Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

309 lines
8.5 KiB

2 years ago
*> \brief \b SGBCON
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGBCON + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbcon.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbcon.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbcon.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
* WORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER NORM
* INTEGER INFO, KL, KU, LDAB, N
* REAL ANORM, RCOND
* ..
* .. Array Arguments ..
* INTEGER IPIV( * ), IWORK( * )
* REAL AB( LDAB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGBCON estimates the reciprocal of the condition number of a real
*> general band matrix A, in either the 1-norm or the infinity-norm,
*> using the LU factorization computed by SGBTRF.
*>
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
*> condition number is computed as
*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies whether the 1-norm condition number or the
*> infinity-norm condition number is required:
*> = '1' or 'O': 1-norm;
*> = 'I': Infinity-norm.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of subdiagonals within the band of A. KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of superdiagonals within the band of A. KU >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is REAL array, dimension (LDAB,N)
*> Details of the LU factorization of the band matrix A, as
*> computed by SGBTRF. U is stored as an upper triangular band
*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
*> the multipliers used during the factorization are stored in
*> rows KL+KU+2 to 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices; for 1 <= i <= N, row i of the matrix was
*> interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*> ANORM is REAL
*> If NORM = '1' or 'O', the 1-norm of the original matrix A.
*> If NORM = 'I', the infinity-norm of the original matrix A.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The reciprocal of the condition number of the matrix A,
*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realGBcomputational
*
* =====================================================================
SUBROUTINE SGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
$ WORK, IWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER INFO, KL, KU, LDAB, N
REAL ANORM, RCOND
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), IWORK( * )
REAL AB( LDAB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LNOTI, ONENRM
CHARACTER NORMIN
INTEGER IX, J, JP, KASE, KASE1, KD, LM
REAL AINVNM, SCALE, SMLNUM, T
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SDOT, SLAMCH
EXTERNAL LSAME, ISAMAX, SDOT, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SLACN2, SLATBS, SRSCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KL.LT.0 ) THEN
INFO = -3
ELSE IF( KU.LT.0 ) THEN
INFO = -4
ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
INFO = -6
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGBCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
SMLNUM = SLAMCH( 'Safe minimum' )
*
* Estimate the norm of inv(A).
*
AINVNM = ZERO
NORMIN = 'N'
IF( ONENRM ) THEN
KASE1 = 1
ELSE
KASE1 = 2
END IF
KD = KL + KU + 1
LNOTI = KL.GT.0
KASE = 0
10 CONTINUE
CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.KASE1 ) THEN
*
* Multiply by inv(L).
*
IF( LNOTI ) THEN
DO 20 J = 1, N - 1
LM = MIN( KL, N-J )
JP = IPIV( J )
T = WORK( JP )
IF( JP.NE.J ) THEN
WORK( JP ) = WORK( J )
WORK( J ) = T
END IF
CALL SAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
20 CONTINUE
END IF
*
* Multiply by inv(U).
*
CALL SLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
$ KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
$ INFO )
ELSE
*
* Multiply by inv(U**T).
*
CALL SLATBS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N,
$ KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
$ INFO )
*
* Multiply by inv(L**T).
*
IF( LNOTI ) THEN
DO 30 J = N - 1, 1, -1
LM = MIN( KL, N-J )
WORK( J ) = WORK( J ) - SDOT( LM, AB( KD+1, J ), 1,
$ WORK( J+1 ), 1 )
JP = IPIV( J )
IF( JP.NE.J ) THEN
T = WORK( JP )
WORK( JP ) = WORK( J )
WORK( J ) = T
END IF
30 CONTINUE
END IF
END IF
*
* Divide X by 1/SCALE if doing so will not cause overflow.
*
NORMIN = 'Y'
IF( SCALE.NE.ONE ) THEN
IX = ISAMAX( N, WORK, 1 )
IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
$ GO TO 40
CALL SRSCL( N, SCALE, WORK, 1 )
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
40 CONTINUE
RETURN
*
* End of SGBCON
*
END