You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
526 lines
17 KiB
526 lines
17 KiB
2 years ago
|
*> \brief <b> SGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SGEEV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeev.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeev.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeev.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
|
||
|
* LDVR, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBVL, JOBVR
|
||
|
* INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
|
||
|
* $ WI( * ), WORK( * ), WR( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SGEEV computes for an N-by-N real nonsymmetric matrix A, the
|
||
|
*> eigenvalues and, optionally, the left and/or right eigenvectors.
|
||
|
*>
|
||
|
*> The right eigenvector v(j) of A satisfies
|
||
|
*> A * v(j) = lambda(j) * v(j)
|
||
|
*> where lambda(j) is its eigenvalue.
|
||
|
*> The left eigenvector u(j) of A satisfies
|
||
|
*> u(j)**H * A = lambda(j) * u(j)**H
|
||
|
*> where u(j)**H denotes the conjugate-transpose of u(j).
|
||
|
*>
|
||
|
*> The computed eigenvectors are normalized to have Euclidean norm
|
||
|
*> equal to 1 and largest component real.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBVL
|
||
|
*> \verbatim
|
||
|
*> JOBVL is CHARACTER*1
|
||
|
*> = 'N': left eigenvectors of A are not computed;
|
||
|
*> = 'V': left eigenvectors of A are computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBVR
|
||
|
*> \verbatim
|
||
|
*> JOBVR is CHARACTER*1
|
||
|
*> = 'N': right eigenvectors of A are not computed;
|
||
|
*> = 'V': right eigenvectors of A are computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> On entry, the N-by-N matrix A.
|
||
|
*> On exit, A has been overwritten.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WR
|
||
|
*> \verbatim
|
||
|
*> WR is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WI
|
||
|
*> \verbatim
|
||
|
*> WI is REAL array, dimension (N)
|
||
|
*> WR and WI contain the real and imaginary parts,
|
||
|
*> respectively, of the computed eigenvalues. Complex
|
||
|
*> conjugate pairs of eigenvalues appear consecutively
|
||
|
*> with the eigenvalue having the positive imaginary part
|
||
|
*> first.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL array, dimension (LDVL,N)
|
||
|
*> If JOBVL = 'V', the left eigenvectors u(j) are stored one
|
||
|
*> after another in the columns of VL, in the same order
|
||
|
*> as their eigenvalues.
|
||
|
*> If JOBVL = 'N', VL is not referenced.
|
||
|
*> If the j-th eigenvalue is real, then u(j) = VL(:,j),
|
||
|
*> the j-th column of VL.
|
||
|
*> If the j-th and (j+1)-st eigenvalues form a complex
|
||
|
*> conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
|
||
|
*> u(j+1) = VL(:,j) - i*VL(:,j+1).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVL
|
||
|
*> \verbatim
|
||
|
*> LDVL is INTEGER
|
||
|
*> The leading dimension of the array VL. LDVL >= 1; if
|
||
|
*> JOBVL = 'V', LDVL >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VR
|
||
|
*> \verbatim
|
||
|
*> VR is REAL array, dimension (LDVR,N)
|
||
|
*> If JOBVR = 'V', the right eigenvectors v(j) are stored one
|
||
|
*> after another in the columns of VR, in the same order
|
||
|
*> as their eigenvalues.
|
||
|
*> If JOBVR = 'N', VR is not referenced.
|
||
|
*> If the j-th eigenvalue is real, then v(j) = VR(:,j),
|
||
|
*> the j-th column of VR.
|
||
|
*> If the j-th and (j+1)-st eigenvalues form a complex
|
||
|
*> conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
|
||
|
*> v(j+1) = VR(:,j) - i*VR(:,j+1).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVR
|
||
|
*> \verbatim
|
||
|
*> LDVR is INTEGER
|
||
|
*> The leading dimension of the array VR. LDVR >= 1; if
|
||
|
*> JOBVR = 'V', LDVR >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= max(1,3*N), and
|
||
|
*> if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
|
||
|
*> performance, LWORK must generally be larger.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> > 0: if INFO = i, the QR algorithm failed to compute all the
|
||
|
*> eigenvalues, and no eigenvectors have been computed;
|
||
|
*> elements i+1:N of WR and WI contain eigenvalues which
|
||
|
*> have converged.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*
|
||
|
* @generated from dgeev.f, fortran d -> s, Tue Apr 19 01:47:44 2016
|
||
|
*
|
||
|
*> \ingroup realGEeigen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
|
||
|
$ LDVR, WORK, LWORK, INFO )
|
||
|
implicit none
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBVL, JOBVR
|
||
|
INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
|
||
|
$ WI( * ), WORK( * ), WR( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
|
||
|
CHARACTER SIDE
|
||
|
INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
|
||
|
$ LWORK_TREVC, MAXWRK, MINWRK, NOUT
|
||
|
REAL ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
|
||
|
$ SN
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
LOGICAL SELECT( 1 )
|
||
|
REAL DUM( 1 )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLACPY, SLARTG,
|
||
|
$ SLASCL, SORGHR, SROT, SSCAL, STREVC3, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ISAMAX, ILAENV
|
||
|
REAL SLAMCH, SLANGE, SLAPY2, SNRM2
|
||
|
EXTERNAL LSAME, ISAMAX, ILAENV, SLAMCH, SLANGE, SLAPY2,
|
||
|
$ SNRM2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
WANTVL = LSAME( JOBVL, 'V' )
|
||
|
WANTVR = LSAME( JOBVR, 'V' )
|
||
|
IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
|
||
|
INFO = -11
|
||
|
END IF
|
||
|
*
|
||
|
* Compute workspace
|
||
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
||
|
* minimal amount of workspace needed at that point in the code,
|
||
|
* as well as the preferred amount for good performance.
|
||
|
* NB refers to the optimal block size for the immediately
|
||
|
* following subroutine, as returned by ILAENV.
|
||
|
* HSWORK refers to the workspace preferred by SHSEQR, as
|
||
|
* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
|
||
|
* the worst case.)
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
MINWRK = 1
|
||
|
MAXWRK = 1
|
||
|
ELSE
|
||
|
MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
|
||
|
IF( WANTVL ) THEN
|
||
|
MINWRK = 4*N
|
||
|
MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
|
||
|
$ 'SORGHR', ' ', N, 1, N, -1 ) )
|
||
|
CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
|
||
|
$ WORK, -1, INFO )
|
||
|
HSWORK = INT( WORK(1) )
|
||
|
MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
|
||
|
CALL STREVC3( 'L', 'B', SELECT, N, A, LDA,
|
||
|
$ VL, LDVL, VR, LDVR, N, NOUT,
|
||
|
$ WORK, -1, IERR )
|
||
|
LWORK_TREVC = INT( WORK(1) )
|
||
|
MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
|
||
|
MAXWRK = MAX( MAXWRK, 4*N )
|
||
|
ELSE IF( WANTVR ) THEN
|
||
|
MINWRK = 4*N
|
||
|
MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
|
||
|
$ 'SORGHR', ' ', N, 1, N, -1 ) )
|
||
|
CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
|
||
|
$ WORK, -1, INFO )
|
||
|
HSWORK = INT( WORK(1) )
|
||
|
MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
|
||
|
CALL STREVC3( 'R', 'B', SELECT, N, A, LDA,
|
||
|
$ VL, LDVL, VR, LDVR, N, NOUT,
|
||
|
$ WORK, -1, IERR )
|
||
|
LWORK_TREVC = INT( WORK(1) )
|
||
|
MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
|
||
|
MAXWRK = MAX( MAXWRK, 4*N )
|
||
|
ELSE
|
||
|
MINWRK = 3*N
|
||
|
CALL SHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
|
||
|
$ WORK, -1, INFO )
|
||
|
HSWORK = INT( WORK(1) )
|
||
|
MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
|
||
|
END IF
|
||
|
MAXWRK = MAX( MAXWRK, MINWRK )
|
||
|
END IF
|
||
|
WORK( 1 ) = MAXWRK
|
||
|
*
|
||
|
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -13
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGEEV ', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Get machine constants
|
||
|
*
|
||
|
EPS = SLAMCH( 'P' )
|
||
|
SMLNUM = SLAMCH( 'S' )
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
SMLNUM = SQRT( SMLNUM ) / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
|
||
|
SCALEA = .FALSE.
|
||
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
||
|
SCALEA = .TRUE.
|
||
|
CSCALE = SMLNUM
|
||
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
||
|
SCALEA = .TRUE.
|
||
|
CSCALE = BIGNUM
|
||
|
END IF
|
||
|
IF( SCALEA )
|
||
|
$ CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
|
||
|
*
|
||
|
* Balance the matrix
|
||
|
* (Workspace: need N)
|
||
|
*
|
||
|
IBAL = 1
|
||
|
CALL SGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
|
||
|
*
|
||
|
* Reduce to upper Hessenberg form
|
||
|
* (Workspace: need 3*N, prefer 2*N+N*NB)
|
||
|
*
|
||
|
ITAU = IBAL + N
|
||
|
IWRK = ITAU + N
|
||
|
CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
|
||
|
$ LWORK-IWRK+1, IERR )
|
||
|
*
|
||
|
IF( WANTVL ) THEN
|
||
|
*
|
||
|
* Want left eigenvectors
|
||
|
* Copy Householder vectors to VL
|
||
|
*
|
||
|
SIDE = 'L'
|
||
|
CALL SLACPY( 'L', N, N, A, LDA, VL, LDVL )
|
||
|
*
|
||
|
* Generate orthogonal matrix in VL
|
||
|
* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
|
||
|
*
|
||
|
CALL SORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
|
||
|
$ LWORK-IWRK+1, IERR )
|
||
|
*
|
||
|
* Perform QR iteration, accumulating Schur vectors in VL
|
||
|
* (Workspace: need N+1, prefer N+HSWORK (see comments) )
|
||
|
*
|
||
|
IWRK = ITAU
|
||
|
CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
|
||
|
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
|
||
|
*
|
||
|
IF( WANTVR ) THEN
|
||
|
*
|
||
|
* Want left and right eigenvectors
|
||
|
* Copy Schur vectors to VR
|
||
|
*
|
||
|
SIDE = 'B'
|
||
|
CALL SLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
|
||
|
END IF
|
||
|
*
|
||
|
ELSE IF( WANTVR ) THEN
|
||
|
*
|
||
|
* Want right eigenvectors
|
||
|
* Copy Householder vectors to VR
|
||
|
*
|
||
|
SIDE = 'R'
|
||
|
CALL SLACPY( 'L', N, N, A, LDA, VR, LDVR )
|
||
|
*
|
||
|
* Generate orthogonal matrix in VR
|
||
|
* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
|
||
|
*
|
||
|
CALL SORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
|
||
|
$ LWORK-IWRK+1, IERR )
|
||
|
*
|
||
|
* Perform QR iteration, accumulating Schur vectors in VR
|
||
|
* (Workspace: need N+1, prefer N+HSWORK (see comments) )
|
||
|
*
|
||
|
IWRK = ITAU
|
||
|
CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
|
||
|
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute eigenvalues only
|
||
|
* (Workspace: need N+1, prefer N+HSWORK (see comments) )
|
||
|
*
|
||
|
IWRK = ITAU
|
||
|
CALL SHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
|
||
|
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* If INFO .NE. 0 from SHSEQR, then quit
|
||
|
*
|
||
|
IF( INFO.NE.0 )
|
||
|
$ GO TO 50
|
||
|
*
|
||
|
IF( WANTVL .OR. WANTVR ) THEN
|
||
|
*
|
||
|
* Compute left and/or right eigenvectors
|
||
|
* (Workspace: need 4*N, prefer N + N + 2*N*NB)
|
||
|
*
|
||
|
CALL STREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
|
||
|
$ N, NOUT, WORK( IWRK ), LWORK-IWRK+1, IERR )
|
||
|
END IF
|
||
|
*
|
||
|
IF( WANTVL ) THEN
|
||
|
*
|
||
|
* Undo balancing of left eigenvectors
|
||
|
* (Workspace: need N)
|
||
|
*
|
||
|
CALL SGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
|
||
|
$ IERR )
|
||
|
*
|
||
|
* Normalize left eigenvectors and make largest component real
|
||
|
*
|
||
|
DO 20 I = 1, N
|
||
|
IF( WI( I ).EQ.ZERO ) THEN
|
||
|
SCL = ONE / SNRM2( N, VL( 1, I ), 1 )
|
||
|
CALL SSCAL( N, SCL, VL( 1, I ), 1 )
|
||
|
ELSE IF( WI( I ).GT.ZERO ) THEN
|
||
|
SCL = ONE / SLAPY2( SNRM2( N, VL( 1, I ), 1 ),
|
||
|
$ SNRM2( N, VL( 1, I+1 ), 1 ) )
|
||
|
CALL SSCAL( N, SCL, VL( 1, I ), 1 )
|
||
|
CALL SSCAL( N, SCL, VL( 1, I+1 ), 1 )
|
||
|
DO 10 K = 1, N
|
||
|
WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
|
||
|
10 CONTINUE
|
||
|
K = ISAMAX( N, WORK( IWRK ), 1 )
|
||
|
CALL SLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
|
||
|
CALL SROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
|
||
|
VL( K, I+1 ) = ZERO
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
IF( WANTVR ) THEN
|
||
|
*
|
||
|
* Undo balancing of right eigenvectors
|
||
|
* (Workspace: need N)
|
||
|
*
|
||
|
CALL SGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
|
||
|
$ IERR )
|
||
|
*
|
||
|
* Normalize right eigenvectors and make largest component real
|
||
|
*
|
||
|
DO 40 I = 1, N
|
||
|
IF( WI( I ).EQ.ZERO ) THEN
|
||
|
SCL = ONE / SNRM2( N, VR( 1, I ), 1 )
|
||
|
CALL SSCAL( N, SCL, VR( 1, I ), 1 )
|
||
|
ELSE IF( WI( I ).GT.ZERO ) THEN
|
||
|
SCL = ONE / SLAPY2( SNRM2( N, VR( 1, I ), 1 ),
|
||
|
$ SNRM2( N, VR( 1, I+1 ), 1 ) )
|
||
|
CALL SSCAL( N, SCL, VR( 1, I ), 1 )
|
||
|
CALL SSCAL( N, SCL, VR( 1, I+1 ), 1 )
|
||
|
DO 30 K = 1, N
|
||
|
WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
|
||
|
30 CONTINUE
|
||
|
K = ISAMAX( N, WORK( IWRK ), 1 )
|
||
|
CALL SLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
|
||
|
CALL SROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
|
||
|
VR( K, I+1 ) = ZERO
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Undo scaling if necessary
|
||
|
*
|
||
|
50 CONTINUE
|
||
|
IF( SCALEA ) THEN
|
||
|
CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
|
||
|
$ MAX( N-INFO, 1 ), IERR )
|
||
|
CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
|
||
|
$ MAX( N-INFO, 1 ), IERR )
|
||
|
IF( INFO.GT.0 ) THEN
|
||
|
CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
|
||
|
$ IERR )
|
||
|
CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
|
||
|
$ IERR )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
WORK( 1 ) = MAXWRK
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGEEV
|
||
|
*
|
||
|
END
|