You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
297 lines
9.1 KiB
297 lines
9.1 KiB
2 years ago
|
*> \brief \b SGGQRF
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SGGQRF + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggqrf.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggqrf.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggqrf.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
|
||
|
* LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDB, LWORK, M, N, P
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
|
||
|
* $ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SGGQRF computes a generalized QR factorization of an N-by-M matrix A
|
||
|
*> and an N-by-P matrix B:
|
||
|
*>
|
||
|
*> A = Q*R, B = Q*T*Z,
|
||
|
*>
|
||
|
*> where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
|
||
|
*> matrix, and R and T assume one of the forms:
|
||
|
*>
|
||
|
*> if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N,
|
||
|
*> ( 0 ) N-M N M-N
|
||
|
*> M
|
||
|
*>
|
||
|
*> where R11 is upper triangular, and
|
||
|
*>
|
||
|
*> if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P,
|
||
|
*> P-N N ( T21 ) P
|
||
|
*> P
|
||
|
*>
|
||
|
*> where T12 or T21 is upper triangular.
|
||
|
*>
|
||
|
*> In particular, if B is square and nonsingular, the GQR factorization
|
||
|
*> of A and B implicitly gives the QR factorization of inv(B)*A:
|
||
|
*>
|
||
|
*> inv(B)*A = Z**T*(inv(T)*R)
|
||
|
*>
|
||
|
*> where inv(B) denotes the inverse of the matrix B, and Z**T denotes the
|
||
|
*> transpose of the matrix Z.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of rows of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of columns of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] P
|
||
|
*> \verbatim
|
||
|
*> P is INTEGER
|
||
|
*> The number of columns of the matrix B. P >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,M)
|
||
|
*> On entry, the N-by-M matrix A.
|
||
|
*> On exit, the elements on and above the diagonal of the array
|
||
|
*> contain the min(N,M)-by-M upper trapezoidal matrix R (R is
|
||
|
*> upper triangular if N >= M); the elements below the diagonal,
|
||
|
*> with the array TAUA, represent the orthogonal matrix Q as a
|
||
|
*> product of min(N,M) elementary reflectors (see Further
|
||
|
*> Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAUA
|
||
|
*> \verbatim
|
||
|
*> TAUA is REAL array, dimension (min(N,M))
|
||
|
*> The scalar factors of the elementary reflectors which
|
||
|
*> represent the orthogonal matrix Q (see Further Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB,P)
|
||
|
*> On entry, the N-by-P matrix B.
|
||
|
*> On exit, if N <= P, the upper triangle of the subarray
|
||
|
*> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
|
||
|
*> if N > P, the elements on and above the (N-P)-th subdiagonal
|
||
|
*> contain the N-by-P upper trapezoidal matrix T; the remaining
|
||
|
*> elements, with the array TAUB, represent the orthogonal
|
||
|
*> matrix Z as a product of elementary reflectors (see Further
|
||
|
*> Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAUB
|
||
|
*> \verbatim
|
||
|
*> TAUB is REAL array, dimension (min(N,P))
|
||
|
*> The scalar factors of the elementary reflectors which
|
||
|
*> represent the orthogonal matrix Z (see Further Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= max(1,N,M,P).
|
||
|
*> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
|
||
|
*> where NB1 is the optimal blocksize for the QR factorization
|
||
|
*> of an N-by-M matrix, NB2 is the optimal blocksize for the
|
||
|
*> RQ factorization of an N-by-P matrix, and NB3 is the optimal
|
||
|
*> blocksize for a call of SORMQR.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrix Q is represented as a product of elementary reflectors
|
||
|
*>
|
||
|
*> Q = H(1) H(2) . . . H(k), where k = min(n,m).
|
||
|
*>
|
||
|
*> Each H(i) has the form
|
||
|
*>
|
||
|
*> H(i) = I - taua * v * v**T
|
||
|
*>
|
||
|
*> where taua is a real scalar, and v is a real vector with
|
||
|
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
|
||
|
*> and taua in TAUA(i).
|
||
|
*> To form Q explicitly, use LAPACK subroutine SORGQR.
|
||
|
*> To use Q to update another matrix, use LAPACK subroutine SORMQR.
|
||
|
*>
|
||
|
*> The matrix Z is represented as a product of elementary reflectors
|
||
|
*>
|
||
|
*> Z = H(1) H(2) . . . H(k), where k = min(n,p).
|
||
|
*>
|
||
|
*> Each H(i) has the form
|
||
|
*>
|
||
|
*> H(i) = I - taub * v * v**T
|
||
|
*>
|
||
|
*> where taub is a real scalar, and v is a real vector with
|
||
|
*> v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
|
||
|
*> B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
|
||
|
*> To form Z explicitly, use LAPACK subroutine SORGRQ.
|
||
|
*> To use Z to update another matrix, use LAPACK subroutine SORMRQ.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
|
||
|
$ LWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDB, LWORK, M, N, P
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
|
||
|
$ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY
|
||
|
INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEQRF, SGERQF, SORMQR, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL ILAENV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC INT, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters
|
||
|
*
|
||
|
INFO = 0
|
||
|
NB1 = ILAENV( 1, 'SGEQRF', ' ', N, M, -1, -1 )
|
||
|
NB2 = ILAENV( 1, 'SGERQF', ' ', N, P, -1, -1 )
|
||
|
NB3 = ILAENV( 1, 'SORMQR', ' ', N, M, P, -1 )
|
||
|
NB = MAX( NB1, NB2, NB3 )
|
||
|
LWKOPT = MAX( N, M, P )*NB
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
IF( N.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( M.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( P.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -11
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGGQRF', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* QR factorization of N-by-M matrix A: A = Q*R
|
||
|
*
|
||
|
CALL SGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
|
||
|
LOPT = INT( WORK( 1 ) )
|
||
|
*
|
||
|
* Update B := Q**T*B.
|
||
|
*
|
||
|
CALL SORMQR( 'Left', 'Transpose', N, P, MIN( N, M ), A, LDA, TAUA,
|
||
|
$ B, LDB, WORK, LWORK, INFO )
|
||
|
LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
|
||
|
*
|
||
|
* RQ factorization of N-by-P matrix B: B = T*Z.
|
||
|
*
|
||
|
CALL SGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
|
||
|
WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGGQRF
|
||
|
*
|
||
|
END
|