You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
408 lines
11 KiB
408 lines
11 KiB
2 years ago
|
*> \brief \b SLAED6 used by SSTEDC. Computes one Newton step in solution of the secular equation.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLAED6 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed6.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed6.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed6.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL ORGATI
|
||
|
* INTEGER INFO, KNITER
|
||
|
* REAL FINIT, RHO, TAU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL D( 3 ), Z( 3 )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLAED6 computes the positive or negative root (closest to the origin)
|
||
|
*> of
|
||
|
*> z(1) z(2) z(3)
|
||
|
*> f(x) = rho + --------- + ---------- + ---------
|
||
|
*> d(1)-x d(2)-x d(3)-x
|
||
|
*>
|
||
|
*> It is assumed that
|
||
|
*>
|
||
|
*> if ORGATI = .true. the root is between d(2) and d(3);
|
||
|
*> otherwise it is between d(1) and d(2)
|
||
|
*>
|
||
|
*> This routine will be called by SLAED4 when necessary. In most cases,
|
||
|
*> the root sought is the smallest in magnitude, though it might not be
|
||
|
*> in some extremely rare situations.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] KNITER
|
||
|
*> \verbatim
|
||
|
*> KNITER is INTEGER
|
||
|
*> Refer to SLAED4 for its significance.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ORGATI
|
||
|
*> \verbatim
|
||
|
*> ORGATI is LOGICAL
|
||
|
*> If ORGATI is true, the needed root is between d(2) and
|
||
|
*> d(3); otherwise it is between d(1) and d(2). See
|
||
|
*> SLAED4 for further details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RHO
|
||
|
*> \verbatim
|
||
|
*> RHO is REAL
|
||
|
*> Refer to the equation f(x) above.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (3)
|
||
|
*> D satisfies d(1) < d(2) < d(3).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Z
|
||
|
*> \verbatim
|
||
|
*> Z is REAL array, dimension (3)
|
||
|
*> Each of the elements in z must be positive.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] FINIT
|
||
|
*> \verbatim
|
||
|
*> FINIT is REAL
|
||
|
*> The value of f at 0. It is more accurate than the one
|
||
|
*> evaluated inside this routine (if someone wants to do
|
||
|
*> so).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is REAL
|
||
|
*> The root of the equation f(x).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> > 0: if INFO = 1, failure to converge
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup auxOTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> 10/02/03: This version has a few statements commented out for thread
|
||
|
*> safety (machine parameters are computed on each entry). SJH.
|
||
|
*>
|
||
|
*> 05/10/06: Modified from a new version of Ren-Cang Li, use
|
||
|
*> Gragg-Thornton-Warner cubic convergent scheme for better stability.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Ren-Cang Li, Computer Science Division, University of California
|
||
|
*> at Berkeley, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL ORGATI
|
||
|
INTEGER INFO, KNITER
|
||
|
REAL FINIT, RHO, TAU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL D( 3 ), Z( 3 )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER MAXIT
|
||
|
PARAMETER ( MAXIT = 40 )
|
||
|
REAL ZERO, ONE, TWO, THREE, FOUR, EIGHT
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
|
||
|
$ THREE = 3.0E0, FOUR = 4.0E0, EIGHT = 8.0E0 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH
|
||
|
EXTERNAL SLAMCH
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
REAL DSCALE( 3 ), ZSCALE( 3 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL SCALE
|
||
|
INTEGER I, ITER, NITER
|
||
|
REAL A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
|
||
|
$ FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
|
||
|
$ SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,
|
||
|
$ LBD, UBD
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
*
|
||
|
IF( ORGATI ) THEN
|
||
|
LBD = D(2)
|
||
|
UBD = D(3)
|
||
|
ELSE
|
||
|
LBD = D(1)
|
||
|
UBD = D(2)
|
||
|
END IF
|
||
|
IF( FINIT .LT. ZERO )THEN
|
||
|
LBD = ZERO
|
||
|
ELSE
|
||
|
UBD = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
NITER = 1
|
||
|
TAU = ZERO
|
||
|
IF( KNITER.EQ.2 ) THEN
|
||
|
IF( ORGATI ) THEN
|
||
|
TEMP = ( D( 3 )-D( 2 ) ) / TWO
|
||
|
C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
|
||
|
A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
|
||
|
B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
|
||
|
ELSE
|
||
|
TEMP = ( D( 1 )-D( 2 ) ) / TWO
|
||
|
C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
|
||
|
A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
|
||
|
B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
|
||
|
END IF
|
||
|
TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
|
||
|
A = A / TEMP
|
||
|
B = B / TEMP
|
||
|
C = C / TEMP
|
||
|
IF( C.EQ.ZERO ) THEN
|
||
|
TAU = B / A
|
||
|
ELSE IF( A.LE.ZERO ) THEN
|
||
|
TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
|
||
|
ELSE
|
||
|
TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
|
||
|
END IF
|
||
|
IF( TAU .LT. LBD .OR. TAU .GT. UBD )
|
||
|
$ TAU = ( LBD+UBD )/TWO
|
||
|
IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
|
||
|
TAU = ZERO
|
||
|
ELSE
|
||
|
TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) +
|
||
|
$ TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) +
|
||
|
$ TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
|
||
|
IF( TEMP .LE. ZERO )THEN
|
||
|
LBD = TAU
|
||
|
ELSE
|
||
|
UBD = TAU
|
||
|
END IF
|
||
|
IF( ABS( FINIT ).LE.ABS( TEMP ) )
|
||
|
$ TAU = ZERO
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* get machine parameters for possible scaling to avoid overflow
|
||
|
*
|
||
|
* modified by Sven: parameters SMALL1, SMINV1, SMALL2,
|
||
|
* SMINV2, EPS are not SAVEd anymore between one call to the
|
||
|
* others but recomputed at each call
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
BASE = SLAMCH( 'Base' )
|
||
|
SMALL1 = BASE**( INT( LOG( SLAMCH( 'SafMin' ) ) / LOG( BASE ) /
|
||
|
$ THREE ) )
|
||
|
SMINV1 = ONE / SMALL1
|
||
|
SMALL2 = SMALL1*SMALL1
|
||
|
SMINV2 = SMINV1*SMINV1
|
||
|
*
|
||
|
* Determine if scaling of inputs necessary to avoid overflow
|
||
|
* when computing 1/TEMP**3
|
||
|
*
|
||
|
IF( ORGATI ) THEN
|
||
|
TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
|
||
|
ELSE
|
||
|
TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
|
||
|
END IF
|
||
|
SCALE = .FALSE.
|
||
|
IF( TEMP.LE.SMALL1 ) THEN
|
||
|
SCALE = .TRUE.
|
||
|
IF( TEMP.LE.SMALL2 ) THEN
|
||
|
*
|
||
|
* Scale up by power of radix nearest 1/SAFMIN**(2/3)
|
||
|
*
|
||
|
SCLFAC = SMINV2
|
||
|
SCLINV = SMALL2
|
||
|
ELSE
|
||
|
*
|
||
|
* Scale up by power of radix nearest 1/SAFMIN**(1/3)
|
||
|
*
|
||
|
SCLFAC = SMINV1
|
||
|
SCLINV = SMALL1
|
||
|
END IF
|
||
|
*
|
||
|
* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
|
||
|
*
|
||
|
DO 10 I = 1, 3
|
||
|
DSCALE( I ) = D( I )*SCLFAC
|
||
|
ZSCALE( I ) = Z( I )*SCLFAC
|
||
|
10 CONTINUE
|
||
|
TAU = TAU*SCLFAC
|
||
|
LBD = LBD*SCLFAC
|
||
|
UBD = UBD*SCLFAC
|
||
|
ELSE
|
||
|
*
|
||
|
* Copy D and Z to DSCALE and ZSCALE
|
||
|
*
|
||
|
DO 20 I = 1, 3
|
||
|
DSCALE( I ) = D( I )
|
||
|
ZSCALE( I ) = Z( I )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
FC = ZERO
|
||
|
DF = ZERO
|
||
|
DDF = ZERO
|
||
|
DO 30 I = 1, 3
|
||
|
TEMP = ONE / ( DSCALE( I )-TAU )
|
||
|
TEMP1 = ZSCALE( I )*TEMP
|
||
|
TEMP2 = TEMP1*TEMP
|
||
|
TEMP3 = TEMP2*TEMP
|
||
|
FC = FC + TEMP1 / DSCALE( I )
|
||
|
DF = DF + TEMP2
|
||
|
DDF = DDF + TEMP3
|
||
|
30 CONTINUE
|
||
|
F = FINIT + TAU*FC
|
||
|
*
|
||
|
IF( ABS( F ).LE.ZERO )
|
||
|
$ GO TO 60
|
||
|
IF( F .LE. ZERO )THEN
|
||
|
LBD = TAU
|
||
|
ELSE
|
||
|
UBD = TAU
|
||
|
END IF
|
||
|
*
|
||
|
* Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
|
||
|
* scheme
|
||
|
*
|
||
|
* It is not hard to see that
|
||
|
*
|
||
|
* 1) Iterations will go up monotonically
|
||
|
* if FINIT < 0;
|
||
|
*
|
||
|
* 2) Iterations will go down monotonically
|
||
|
* if FINIT > 0.
|
||
|
*
|
||
|
ITER = NITER + 1
|
||
|
*
|
||
|
DO 50 NITER = ITER, MAXIT
|
||
|
*
|
||
|
IF( ORGATI ) THEN
|
||
|
TEMP1 = DSCALE( 2 ) - TAU
|
||
|
TEMP2 = DSCALE( 3 ) - TAU
|
||
|
ELSE
|
||
|
TEMP1 = DSCALE( 1 ) - TAU
|
||
|
TEMP2 = DSCALE( 2 ) - TAU
|
||
|
END IF
|
||
|
A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
|
||
|
B = TEMP1*TEMP2*F
|
||
|
C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
|
||
|
TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
|
||
|
A = A / TEMP
|
||
|
B = B / TEMP
|
||
|
C = C / TEMP
|
||
|
IF( C.EQ.ZERO ) THEN
|
||
|
ETA = B / A
|
||
|
ELSE IF( A.LE.ZERO ) THEN
|
||
|
ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
|
||
|
ELSE
|
||
|
ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
|
||
|
END IF
|
||
|
IF( F*ETA.GE.ZERO ) THEN
|
||
|
ETA = -F / DF
|
||
|
END IF
|
||
|
*
|
||
|
TAU = TAU + ETA
|
||
|
IF( TAU .LT. LBD .OR. TAU .GT. UBD )
|
||
|
$ TAU = ( LBD + UBD )/TWO
|
||
|
*
|
||
|
FC = ZERO
|
||
|
ERRETM = ZERO
|
||
|
DF = ZERO
|
||
|
DDF = ZERO
|
||
|
DO 40 I = 1, 3
|
||
|
IF ( ( DSCALE( I )-TAU ).NE.ZERO ) THEN
|
||
|
TEMP = ONE / ( DSCALE( I )-TAU )
|
||
|
TEMP1 = ZSCALE( I )*TEMP
|
||
|
TEMP2 = TEMP1*TEMP
|
||
|
TEMP3 = TEMP2*TEMP
|
||
|
TEMP4 = TEMP1 / DSCALE( I )
|
||
|
FC = FC + TEMP4
|
||
|
ERRETM = ERRETM + ABS( TEMP4 )
|
||
|
DF = DF + TEMP2
|
||
|
DDF = DDF + TEMP3
|
||
|
ELSE
|
||
|
GO TO 60
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
F = FINIT + TAU*FC
|
||
|
ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
|
||
|
$ ABS( TAU )*DF
|
||
|
IF( ( ABS( F ).LE.FOUR*EPS*ERRETM ) .OR.
|
||
|
$ ( (UBD-LBD).LE.FOUR*EPS*ABS(TAU) ) )
|
||
|
$ GO TO 60
|
||
|
IF( F .LE. ZERO )THEN
|
||
|
LBD = TAU
|
||
|
ELSE
|
||
|
UBD = TAU
|
||
|
END IF
|
||
|
50 CONTINUE
|
||
|
INFO = 1
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* Undo scaling
|
||
|
*
|
||
|
IF( SCALE )
|
||
|
$ TAU = TAU*SCLINV
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLAED6
|
||
|
*
|
||
|
END
|