You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
306 lines
9.0 KiB
306 lines
9.0 KiB
2 years ago
|
*> \brief \b SORGTSQR
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SORGTSQR + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtsqr.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtsqr.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtsqr.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
|
||
|
* $ INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), T( LDT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
|
||
|
*> which are the first N columns of a product of real orthogonal
|
||
|
*> matrices of order M which are returned by SLATSQR
|
||
|
*>
|
||
|
*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
|
||
|
*>
|
||
|
*> See the documentation for SLATSQR.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. M >= N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] MB
|
||
|
*> \verbatim
|
||
|
*> MB is INTEGER
|
||
|
*> The row block size used by SLATSQR to return
|
||
|
*> arrays A and T. MB > N.
|
||
|
*> (Note that if MB > M, then M is used instead of MB
|
||
|
*> as the row block size).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB
|
||
|
*> \verbatim
|
||
|
*> NB is INTEGER
|
||
|
*> The column block size used by SLATSQR to return
|
||
|
*> arrays A and T. NB >= 1.
|
||
|
*> (Note that if NB > N, then N is used instead of NB
|
||
|
*> as the column block size).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*>
|
||
|
*> On entry:
|
||
|
*>
|
||
|
*> The elements on and above the diagonal are not accessed.
|
||
|
*> The elements below the diagonal represent the unit
|
||
|
*> lower-trapezoidal blocked matrix V computed by SLATSQR
|
||
|
*> that defines the input matrices Q_in(k) (ones on the
|
||
|
*> diagonal are not stored) (same format as the output A
|
||
|
*> below the diagonal in SLATSQR).
|
||
|
*>
|
||
|
*> On exit:
|
||
|
*>
|
||
|
*> The array A contains an M-by-N orthonormal matrix Q_out,
|
||
|
*> i.e the columns of A are orthogonal unit vectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] T
|
||
|
*> \verbatim
|
||
|
*> T is REAL array,
|
||
|
*> dimension (LDT, N * NIRB)
|
||
|
*> where NIRB = Number_of_input_row_blocks
|
||
|
*> = MAX( 1, CEIL((M-N)/(MB-N)) )
|
||
|
*> Let NICB = Number_of_input_col_blocks
|
||
|
*> = CEIL(N/NB)
|
||
|
*>
|
||
|
*> The upper-triangular block reflectors used to define the
|
||
|
*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
|
||
|
*> reflectors are stored in compact form in NIRB block
|
||
|
*> reflector sequences. Each of NIRB block reflector sequences
|
||
|
*> is stored in a larger NB-by-N column block of T and consists
|
||
|
*> of NICB smaller NB-by-NB upper-triangular column blocks.
|
||
|
*> (same format as the output T in SLATSQR).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of the array T.
|
||
|
*> LDT >= max(1,min(NB1,N)).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> (workspace) REAL array, dimension (MAX(2,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= (M+NB)*N.
|
||
|
*> If LWORK = -1, then a workspace query is assumed.
|
||
|
*> The routine only calculates the optimal size of the WORK
|
||
|
*> array, returns this value as the first entry of the WORK
|
||
|
*> array, and no error message related to LWORK is issued
|
||
|
*> by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup singleOTHERcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> November 2019, Igor Kozachenko,
|
||
|
*> Computer Science Division,
|
||
|
*> University of California, Berkeley
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
|
||
|
$ INFO )
|
||
|
IMPLICIT NONE
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), T( LDT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY
|
||
|
INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SCOPY, SLAMTSQR, SLASET, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC REAL, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters
|
||
|
*
|
||
|
LQUERY = LWORK.EQ.-1
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( MB.LE.N ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( NB.LT.1 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE
|
||
|
*
|
||
|
* Test the input LWORK for the dimension of the array WORK.
|
||
|
* This workspace is used to store array C(LDC, N) and WORK(LWORK)
|
||
|
* in the call to SLAMTSQR. See the documentation for SLAMTSQR.
|
||
|
*
|
||
|
IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
|
||
|
INFO = -10
|
||
|
ELSE
|
||
|
*
|
||
|
* Set block size for column blocks
|
||
|
*
|
||
|
NBLOCAL = MIN( NB, N )
|
||
|
*
|
||
|
* LWORK = -1, then set the size for the array C(LDC,N)
|
||
|
* in SLAMTSQR call and set the optimal size of the work array
|
||
|
* WORK(LWORK) in SLAMTSQR call.
|
||
|
*
|
||
|
LDC = M
|
||
|
LC = LDC*N
|
||
|
LW = N * NBLOCAL
|
||
|
*
|
||
|
LWORKOPT = LC+LW
|
||
|
*
|
||
|
IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
|
||
|
INFO = -10
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Handle error in the input parameters and return workspace query.
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SORGTSQR', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF ( LQUERY ) THEN
|
||
|
WORK( 1 ) = REAL( LWORKOPT )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( MIN( M, N ).EQ.0 ) THEN
|
||
|
WORK( 1 ) = REAL( LWORKOPT )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
|
||
|
* of M-by-M orthogonal matrix Q_in, which is implicitly stored in
|
||
|
* the subdiagonal part of input array A and in the input array T.
|
||
|
* Perform by the following operation using the routine SLAMTSQR.
|
||
|
*
|
||
|
* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
|
||
|
* ( 0 ) 0 is a (M-N)-by-N zero matrix.
|
||
|
*
|
||
|
* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
|
||
|
* on the diagonal and zeros elsewhere.
|
||
|
*
|
||
|
CALL SLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
|
||
|
*
|
||
|
* (1b) On input, WORK(1:LDC*N) stores ( I );
|
||
|
* ( 0 )
|
||
|
*
|
||
|
* On output, WORK(1:LDC*N) stores Q1_in.
|
||
|
*
|
||
|
CALL SLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
|
||
|
$ WORK, LDC, WORK( LC+1 ), LW, IINFO )
|
||
|
*
|
||
|
* (2) Copy the result from the part of the work array (1:M,1:N)
|
||
|
* with the leading dimension LDC that starts at WORK(1) into
|
||
|
* the output array A(1:M,1:N) column-by-column.
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
CALL SCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
|
||
|
END DO
|
||
|
*
|
||
|
WORK( 1 ) = REAL( LWORKOPT )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SORGTSQR
|
||
|
*
|
||
|
END
|