You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
461 lines
14 KiB
461 lines
14 KiB
2 years ago
|
*> \brief <b> SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SSTEVX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstevx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstevx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstevx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
|
||
|
* M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBZ, RANGE
|
||
|
* INTEGER IL, INFO, IU, LDZ, M, N
|
||
|
* REAL ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IFAIL( * ), IWORK( * )
|
||
|
* REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SSTEVX computes selected eigenvalues and, optionally, eigenvectors
|
||
|
*> of a real symmetric tridiagonal matrix A. Eigenvalues and
|
||
|
*> eigenvectors can be selected by specifying either a range of values
|
||
|
*> or a range of indices for the desired eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBZ
|
||
|
*> \verbatim
|
||
|
*> JOBZ is CHARACTER*1
|
||
|
*> = 'N': Compute eigenvalues only;
|
||
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RANGE
|
||
|
*> \verbatim
|
||
|
*> RANGE is CHARACTER*1
|
||
|
*> = 'A': all eigenvalues will be found.
|
||
|
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
|
||
|
*> will be found.
|
||
|
*> = 'I': the IL-th through IU-th eigenvalues will be found.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (N)
|
||
|
*> On entry, the n diagonal elements of the tridiagonal matrix
|
||
|
*> A.
|
||
|
*> On exit, D may be multiplied by a constant factor chosen
|
||
|
*> to avoid over/underflow in computing the eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] E
|
||
|
*> \verbatim
|
||
|
*> E is REAL array, dimension (max(1,N-1))
|
||
|
*> On entry, the (n-1) subdiagonal elements of the tridiagonal
|
||
|
*> matrix A in elements 1 to N-1 of E.
|
||
|
*> On exit, E may be multiplied by a constant factor chosen
|
||
|
*> to avoid over/underflow in computing the eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL
|
||
|
*> If RANGE='V', the lower bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VU
|
||
|
*> \verbatim
|
||
|
*> VU is REAL
|
||
|
*> If RANGE='V', the upper bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IL
|
||
|
*> \verbatim
|
||
|
*> IL is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> smallest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IU
|
||
|
*> \verbatim
|
||
|
*> IU is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> largest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ABSTOL
|
||
|
*> \verbatim
|
||
|
*> ABSTOL is REAL
|
||
|
*> The absolute error tolerance for the eigenvalues.
|
||
|
*> An approximate eigenvalue is accepted as converged
|
||
|
*> when it is determined to lie in an interval [a,b]
|
||
|
*> of width less than or equal to
|
||
|
*>
|
||
|
*> ABSTOL + EPS * max( |a|,|b| ) ,
|
||
|
*>
|
||
|
*> where EPS is the machine precision. If ABSTOL is less
|
||
|
*> than or equal to zero, then EPS*|T| will be used in
|
||
|
*> its place, where |T| is the 1-norm of the tridiagonal
|
||
|
*> matrix.
|
||
|
*>
|
||
|
*> Eigenvalues will be computed most accurately when ABSTOL is
|
||
|
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
|
||
|
*> If this routine returns with INFO>0, indicating that some
|
||
|
*> eigenvectors did not converge, try setting ABSTOL to
|
||
|
*> 2*SLAMCH('S').
|
||
|
*>
|
||
|
*> See "Computing Small Singular Values of Bidiagonal Matrices
|
||
|
*> with Guaranteed High Relative Accuracy," by Demmel and
|
||
|
*> Kahan, LAPACK Working Note #3.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The total number of eigenvalues found. 0 <= M <= N.
|
||
|
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is REAL array, dimension (N)
|
||
|
*> The first M elements contain the selected eigenvalues in
|
||
|
*> ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is REAL array, dimension (LDZ, max(1,M) )
|
||
|
*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
|
||
|
*> contain the orthonormal eigenvectors of the matrix A
|
||
|
*> corresponding to the selected eigenvalues, with the i-th
|
||
|
*> column of Z holding the eigenvector associated with W(i).
|
||
|
*> If an eigenvector fails to converge (INFO > 0), then that
|
||
|
*> column of Z contains the latest approximation to the
|
||
|
*> eigenvector, and the index of the eigenvector is returned
|
||
|
*> in IFAIL. If JOBZ = 'N', then Z is not referenced.
|
||
|
*> Note: the user must ensure that at least max(1,M) columns are
|
||
|
*> supplied in the array Z; if RANGE = 'V', the exact value of M
|
||
|
*> is not known in advance and an upper bound must be used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
||
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (5*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (5*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IFAIL
|
||
|
*> \verbatim
|
||
|
*> IFAIL is INTEGER array, dimension (N)
|
||
|
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
|
||
|
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
|
||
|
*> indices of the eigenvectors that failed to converge.
|
||
|
*> If JOBZ = 'N', then IFAIL is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, then i eigenvectors failed to converge.
|
||
|
*> Their indices are stored in array IFAIL.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHEReigen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
|
||
|
$ M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBZ, RANGE
|
||
|
INTEGER IL, INFO, IU, LDZ, M, N
|
||
|
REAL ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IFAIL( * ), IWORK( * )
|
||
|
REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
|
||
|
CHARACTER ORDER
|
||
|
INTEGER I, IMAX, INDISP, INDIWO, INDWRK,
|
||
|
$ ISCALE, ITMP1, J, JJ, NSPLIT
|
||
|
REAL BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
|
||
|
$ TMP1, TNRM, VLL, VUU
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
REAL SLAMCH, SLANST
|
||
|
EXTERNAL LSAME, SLAMCH, SLANST
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SCOPY, SSCAL, SSTEBZ, SSTEIN, SSTEQR, SSTERF,
|
||
|
$ SSWAP, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
WANTZ = LSAME( JOBZ, 'V' )
|
||
|
ALLEIG = LSAME( RANGE, 'A' )
|
||
|
VALEIG = LSAME( RANGE, 'V' )
|
||
|
INDEIG = LSAME( RANGE, 'I' )
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE
|
||
|
IF( VALEIG ) THEN
|
||
|
IF( N.GT.0 .AND. VU.LE.VL )
|
||
|
$ INFO = -7
|
||
|
ELSE IF( INDEIG ) THEN
|
||
|
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
|
||
|
INFO = -9
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
|
||
|
$ INFO = -14
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SSTEVX', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
M = 0
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
IF( ALLEIG .OR. INDEIG ) THEN
|
||
|
M = 1
|
||
|
W( 1 ) = D( 1 )
|
||
|
ELSE
|
||
|
IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
|
||
|
M = 1
|
||
|
W( 1 ) = D( 1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( WANTZ )
|
||
|
$ Z( 1, 1 ) = ONE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants.
|
||
|
*
|
||
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
||
|
EPS = SLAMCH( 'Precision' )
|
||
|
SMLNUM = SAFMIN / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
RMIN = SQRT( SMLNUM )
|
||
|
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
|
||
|
*
|
||
|
* Scale matrix to allowable range, if necessary.
|
||
|
*
|
||
|
ISCALE = 0
|
||
|
IF ( VALEIG ) THEN
|
||
|
VLL = VL
|
||
|
VUU = VU
|
||
|
ELSE
|
||
|
VLL = ZERO
|
||
|
VUU = ZERO
|
||
|
ENDIF
|
||
|
TNRM = SLANST( 'M', N, D, E )
|
||
|
IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
|
||
|
ISCALE = 1
|
||
|
SIGMA = RMIN / TNRM
|
||
|
ELSE IF( TNRM.GT.RMAX ) THEN
|
||
|
ISCALE = 1
|
||
|
SIGMA = RMAX / TNRM
|
||
|
END IF
|
||
|
IF( ISCALE.EQ.1 ) THEN
|
||
|
CALL SSCAL( N, SIGMA, D, 1 )
|
||
|
CALL SSCAL( N-1, SIGMA, E( 1 ), 1 )
|
||
|
IF( VALEIG ) THEN
|
||
|
VLL = VL*SIGMA
|
||
|
VUU = VU*SIGMA
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* If all eigenvalues are desired and ABSTOL is less than zero, then
|
||
|
* call SSTERF or SSTEQR. If this fails for some eigenvalue, then
|
||
|
* try SSTEBZ.
|
||
|
*
|
||
|
TEST = .FALSE.
|
||
|
IF( INDEIG ) THEN
|
||
|
IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
|
||
|
TEST = .TRUE.
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
|
||
|
CALL SCOPY( N, D, 1, W, 1 )
|
||
|
CALL SCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
|
||
|
INDWRK = N + 1
|
||
|
IF( .NOT.WANTZ ) THEN
|
||
|
CALL SSTERF( N, W, WORK, INFO )
|
||
|
ELSE
|
||
|
CALL SSTEQR( 'I', N, W, WORK, Z, LDZ, WORK( INDWRK ), INFO )
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
DO 10 I = 1, N
|
||
|
IFAIL( I ) = 0
|
||
|
10 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
M = N
|
||
|
GO TO 20
|
||
|
END IF
|
||
|
INFO = 0
|
||
|
END IF
|
||
|
*
|
||
|
* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
ORDER = 'B'
|
||
|
ELSE
|
||
|
ORDER = 'E'
|
||
|
END IF
|
||
|
INDWRK = 1
|
||
|
INDISP = 1 + N
|
||
|
INDIWO = INDISP + N
|
||
|
CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
|
||
|
$ NSPLIT, W, IWORK( 1 ), IWORK( INDISP ),
|
||
|
$ WORK( INDWRK ), IWORK( INDIWO ), INFO )
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
CALL SSTEIN( N, D, E, M, W, IWORK( 1 ), IWORK( INDISP ),
|
||
|
$ Z, LDZ, WORK( INDWRK ), IWORK( INDIWO ), IFAIL,
|
||
|
$ INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* If matrix was scaled, then rescale eigenvalues appropriately.
|
||
|
*
|
||
|
20 CONTINUE
|
||
|
IF( ISCALE.EQ.1 ) THEN
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IMAX = M
|
||
|
ELSE
|
||
|
IMAX = INFO - 1
|
||
|
END IF
|
||
|
CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* If eigenvalues are not in order, then sort them, along with
|
||
|
* eigenvectors.
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
DO 40 J = 1, M - 1
|
||
|
I = 0
|
||
|
TMP1 = W( J )
|
||
|
DO 30 JJ = J + 1, M
|
||
|
IF( W( JJ ).LT.TMP1 ) THEN
|
||
|
I = JJ
|
||
|
TMP1 = W( JJ )
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
IF( I.NE.0 ) THEN
|
||
|
ITMP1 = IWORK( 1 + I-1 )
|
||
|
W( I ) = W( J )
|
||
|
IWORK( 1 + I-1 ) = IWORK( 1 + J-1 )
|
||
|
W( J ) = TMP1
|
||
|
IWORK( 1 + J-1 ) = ITMP1
|
||
|
CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
ITMP1 = IFAIL( I )
|
||
|
IFAIL( I ) = IFAIL( J )
|
||
|
IFAIL( J ) = ITMP1
|
||
|
END IF
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SSTEVX
|
||
|
*
|
||
|
END
|