You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
600 lines
19 KiB
600 lines
19 KiB
2 years ago
|
*> \brief \b STRSNA
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download STRSNA + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsna.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsna.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsna.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
|
||
|
* LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER HOWMNY, JOB
|
||
|
* INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL SELECT( * )
|
||
|
* INTEGER IWORK( * )
|
||
|
* REAL S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
|
||
|
* $ VR( LDVR, * ), WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> STRSNA estimates reciprocal condition numbers for specified
|
||
|
*> eigenvalues and/or right eigenvectors of a real upper
|
||
|
*> quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
|
||
|
*> orthogonal).
|
||
|
*>
|
||
|
*> T must be in Schur canonical form (as returned by SHSEQR), that is,
|
||
|
*> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
|
||
|
*> 2-by-2 diagonal block has its diagonal elements equal and its
|
||
|
*> off-diagonal elements of opposite sign.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOB
|
||
|
*> \verbatim
|
||
|
*> JOB is CHARACTER*1
|
||
|
*> Specifies whether condition numbers are required for
|
||
|
*> eigenvalues (S) or eigenvectors (SEP):
|
||
|
*> = 'E': for eigenvalues only (S);
|
||
|
*> = 'V': for eigenvectors only (SEP);
|
||
|
*> = 'B': for both eigenvalues and eigenvectors (S and SEP).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] HOWMNY
|
||
|
*> \verbatim
|
||
|
*> HOWMNY is CHARACTER*1
|
||
|
*> = 'A': compute condition numbers for all eigenpairs;
|
||
|
*> = 'S': compute condition numbers for selected eigenpairs
|
||
|
*> specified by the array SELECT.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SELECT
|
||
|
*> \verbatim
|
||
|
*> SELECT is LOGICAL array, dimension (N)
|
||
|
*> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
|
||
|
*> condition numbers are required. To select condition numbers
|
||
|
*> for the eigenpair corresponding to a real eigenvalue w(j),
|
||
|
*> SELECT(j) must be set to .TRUE.. To select condition numbers
|
||
|
*> corresponding to a complex conjugate pair of eigenvalues w(j)
|
||
|
*> and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
|
||
|
*> set to .TRUE..
|
||
|
*> If HOWMNY = 'A', SELECT is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix T. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] T
|
||
|
*> \verbatim
|
||
|
*> T is REAL array, dimension (LDT,N)
|
||
|
*> The upper quasi-triangular matrix T, in Schur canonical form.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of the array T. LDT >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL array, dimension (LDVL,M)
|
||
|
*> If JOB = 'E' or 'B', VL must contain left eigenvectors of T
|
||
|
*> (or of any Q*T*Q**T with Q orthogonal), corresponding to the
|
||
|
*> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
|
||
|
*> must be stored in consecutive columns of VL, as returned by
|
||
|
*> SHSEIN or STREVC.
|
||
|
*> If JOB = 'V', VL is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVL
|
||
|
*> \verbatim
|
||
|
*> LDVL is INTEGER
|
||
|
*> The leading dimension of the array VL.
|
||
|
*> LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VR
|
||
|
*> \verbatim
|
||
|
*> VR is REAL array, dimension (LDVR,M)
|
||
|
*> If JOB = 'E' or 'B', VR must contain right eigenvectors of T
|
||
|
*> (or of any Q*T*Q**T with Q orthogonal), corresponding to the
|
||
|
*> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
|
||
|
*> must be stored in consecutive columns of VR, as returned by
|
||
|
*> SHSEIN or STREVC.
|
||
|
*> If JOB = 'V', VR is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVR
|
||
|
*> \verbatim
|
||
|
*> LDVR is INTEGER
|
||
|
*> The leading dimension of the array VR.
|
||
|
*> LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] S
|
||
|
*> \verbatim
|
||
|
*> S is REAL array, dimension (MM)
|
||
|
*> If JOB = 'E' or 'B', the reciprocal condition numbers of the
|
||
|
*> selected eigenvalues, stored in consecutive elements of the
|
||
|
*> array. For a complex conjugate pair of eigenvalues two
|
||
|
*> consecutive elements of S are set to the same value. Thus
|
||
|
*> S(j), SEP(j), and the j-th columns of VL and VR all
|
||
|
*> correspond to the same eigenpair (but not in general the
|
||
|
*> j-th eigenpair, unless all eigenpairs are selected).
|
||
|
*> If JOB = 'V', S is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SEP
|
||
|
*> \verbatim
|
||
|
*> SEP is REAL array, dimension (MM)
|
||
|
*> If JOB = 'V' or 'B', the estimated reciprocal condition
|
||
|
*> numbers of the selected eigenvectors, stored in consecutive
|
||
|
*> elements of the array. For a complex eigenvector two
|
||
|
*> consecutive elements of SEP are set to the same value. If
|
||
|
*> the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
|
||
|
*> is set to 0; this can only occur when the true value would be
|
||
|
*> very small anyway.
|
||
|
*> If JOB = 'E', SEP is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] MM
|
||
|
*> \verbatim
|
||
|
*> MM is INTEGER
|
||
|
*> The number of elements in the arrays S (if JOB = 'E' or 'B')
|
||
|
*> and/or SEP (if JOB = 'V' or 'B'). MM >= M.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of elements of the arrays S and/or SEP actually
|
||
|
*> used to store the estimated condition numbers.
|
||
|
*> If HOWMNY = 'A', M is set to N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (LDWORK,N+6)
|
||
|
*> If JOB = 'E', WORK is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDWORK
|
||
|
*> \verbatim
|
||
|
*> LDWORK is INTEGER
|
||
|
*> The leading dimension of the array WORK.
|
||
|
*> LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (2*(N-1))
|
||
|
*> If JOB = 'E', IWORK is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The reciprocal of the condition number of an eigenvalue lambda is
|
||
|
*> defined as
|
||
|
*>
|
||
|
*> S(lambda) = |v**T*u| / (norm(u)*norm(v))
|
||
|
*>
|
||
|
*> where u and v are the right and left eigenvectors of T corresponding
|
||
|
*> to lambda; v**T denotes the transpose of v, and norm(u)
|
||
|
*> denotes the Euclidean norm. These reciprocal condition numbers always
|
||
|
*> lie between zero (very badly conditioned) and one (very well
|
||
|
*> conditioned). If n = 1, S(lambda) is defined to be 1.
|
||
|
*>
|
||
|
*> An approximate error bound for a computed eigenvalue W(i) is given by
|
||
|
*>
|
||
|
*> EPS * norm(T) / S(i)
|
||
|
*>
|
||
|
*> where EPS is the machine precision.
|
||
|
*>
|
||
|
*> The reciprocal of the condition number of the right eigenvector u
|
||
|
*> corresponding to lambda is defined as follows. Suppose
|
||
|
*>
|
||
|
*> T = ( lambda c )
|
||
|
*> ( 0 T22 )
|
||
|
*>
|
||
|
*> Then the reciprocal condition number is
|
||
|
*>
|
||
|
*> SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
|
||
|
*>
|
||
|
*> where sigma-min denotes the smallest singular value. We approximate
|
||
|
*> the smallest singular value by the reciprocal of an estimate of the
|
||
|
*> one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
|
||
|
*> defined to be abs(T(1,1)).
|
||
|
*>
|
||
|
*> An approximate error bound for a computed right eigenvector VR(i)
|
||
|
*> is given by
|
||
|
*>
|
||
|
*> EPS * norm(T) / SEP(i)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
|
||
|
$ LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER HOWMNY, JOB
|
||
|
INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL SELECT( * )
|
||
|
INTEGER IWORK( * )
|
||
|
REAL S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
|
||
|
$ VR( LDVR, * ), WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE, TWO
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL PAIR, SOMCON, WANTBH, WANTS, WANTSP
|
||
|
INTEGER I, IERR, IFST, ILST, J, K, KASE, KS, N2, NN
|
||
|
REAL BIGNUM, COND, CS, DELTA, DUMM, EPS, EST, LNRM,
|
||
|
$ MU, PROD, PROD1, PROD2, RNRM, SCALE, SMLNUM, SN
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISAVE( 3 )
|
||
|
REAL DUMMY( 1 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
REAL SDOT, SLAMCH, SLAPY2, SNRM2
|
||
|
EXTERNAL LSAME, SDOT, SLAMCH, SLAPY2, SNRM2
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SLACN2, SLACPY, SLAQTR, STREXC, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Decode and test the input parameters
|
||
|
*
|
||
|
WANTBH = LSAME( JOB, 'B' )
|
||
|
WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
|
||
|
WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
|
||
|
*
|
||
|
SOMCON = LSAME( HOWMNY, 'S' )
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
|
||
|
INFO = -10
|
||
|
ELSE
|
||
|
*
|
||
|
* Set M to the number of eigenpairs for which condition numbers
|
||
|
* are required, and test MM.
|
||
|
*
|
||
|
IF( SOMCON ) THEN
|
||
|
M = 0
|
||
|
PAIR = .FALSE.
|
||
|
DO 10 K = 1, N
|
||
|
IF( PAIR ) THEN
|
||
|
PAIR = .FALSE.
|
||
|
ELSE
|
||
|
IF( K.LT.N ) THEN
|
||
|
IF( T( K+1, K ).EQ.ZERO ) THEN
|
||
|
IF( SELECT( K ) )
|
||
|
$ M = M + 1
|
||
|
ELSE
|
||
|
PAIR = .TRUE.
|
||
|
IF( SELECT( K ) .OR. SELECT( K+1 ) )
|
||
|
$ M = M + 2
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF( SELECT( N ) )
|
||
|
$ M = M + 1
|
||
|
END IF
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
M = N
|
||
|
END IF
|
||
|
*
|
||
|
IF( MM.LT.M ) THEN
|
||
|
INFO = -13
|
||
|
ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
|
||
|
INFO = -16
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'STRSNA', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
IF( SOMCON ) THEN
|
||
|
IF( .NOT.SELECT( 1 ) )
|
||
|
$ RETURN
|
||
|
END IF
|
||
|
IF( WANTS )
|
||
|
$ S( 1 ) = ONE
|
||
|
IF( WANTSP )
|
||
|
$ SEP( 1 ) = ABS( T( 1, 1 ) )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants
|
||
|
*
|
||
|
EPS = SLAMCH( 'P' )
|
||
|
SMLNUM = SLAMCH( 'S' ) / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
KS = 0
|
||
|
PAIR = .FALSE.
|
||
|
DO 60 K = 1, N
|
||
|
*
|
||
|
* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block.
|
||
|
*
|
||
|
IF( PAIR ) THEN
|
||
|
PAIR = .FALSE.
|
||
|
GO TO 60
|
||
|
ELSE
|
||
|
IF( K.LT.N )
|
||
|
$ PAIR = T( K+1, K ).NE.ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Determine whether condition numbers are required for the k-th
|
||
|
* eigenpair.
|
||
|
*
|
||
|
IF( SOMCON ) THEN
|
||
|
IF( PAIR ) THEN
|
||
|
IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
|
||
|
$ GO TO 60
|
||
|
ELSE
|
||
|
IF( .NOT.SELECT( K ) )
|
||
|
$ GO TO 60
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
KS = KS + 1
|
||
|
*
|
||
|
IF( WANTS ) THEN
|
||
|
*
|
||
|
* Compute the reciprocal condition number of the k-th
|
||
|
* eigenvalue.
|
||
|
*
|
||
|
IF( .NOT.PAIR ) THEN
|
||
|
*
|
||
|
* Real eigenvalue.
|
||
|
*
|
||
|
PROD = SDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
|
||
|
RNRM = SNRM2( N, VR( 1, KS ), 1 )
|
||
|
LNRM = SNRM2( N, VL( 1, KS ), 1 )
|
||
|
S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
|
||
|
ELSE
|
||
|
*
|
||
|
* Complex eigenvalue.
|
||
|
*
|
||
|
PROD1 = SDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
|
||
|
PROD1 = PROD1 + SDOT( N, VR( 1, KS+1 ), 1, VL( 1, KS+1 ),
|
||
|
$ 1 )
|
||
|
PROD2 = SDOT( N, VL( 1, KS ), 1, VR( 1, KS+1 ), 1 )
|
||
|
PROD2 = PROD2 - SDOT( N, VL( 1, KS+1 ), 1, VR( 1, KS ),
|
||
|
$ 1 )
|
||
|
RNRM = SLAPY2( SNRM2( N, VR( 1, KS ), 1 ),
|
||
|
$ SNRM2( N, VR( 1, KS+1 ), 1 ) )
|
||
|
LNRM = SLAPY2( SNRM2( N, VL( 1, KS ), 1 ),
|
||
|
$ SNRM2( N, VL( 1, KS+1 ), 1 ) )
|
||
|
COND = SLAPY2( PROD1, PROD2 ) / ( RNRM*LNRM )
|
||
|
S( KS ) = COND
|
||
|
S( KS+1 ) = COND
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( WANTSP ) THEN
|
||
|
*
|
||
|
* Estimate the reciprocal condition number of the k-th
|
||
|
* eigenvector.
|
||
|
*
|
||
|
* Copy the matrix T to the array WORK and swap the diagonal
|
||
|
* block beginning at T(k,k) to the (1,1) position.
|
||
|
*
|
||
|
CALL SLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
|
||
|
IFST = K
|
||
|
ILST = 1
|
||
|
CALL STREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, IFST, ILST,
|
||
|
$ WORK( 1, N+1 ), IERR )
|
||
|
*
|
||
|
IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
|
||
|
*
|
||
|
* Could not swap because blocks not well separated
|
||
|
*
|
||
|
SCALE = ONE
|
||
|
EST = BIGNUM
|
||
|
ELSE
|
||
|
*
|
||
|
* Reordering successful
|
||
|
*
|
||
|
IF( WORK( 2, 1 ).EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Form C = T22 - lambda*I in WORK(2:N,2:N).
|
||
|
*
|
||
|
DO 20 I = 2, N
|
||
|
WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
|
||
|
20 CONTINUE
|
||
|
N2 = 1
|
||
|
NN = N - 1
|
||
|
ELSE
|
||
|
*
|
||
|
* Triangularize the 2 by 2 block by unitary
|
||
|
* transformation U = [ cs i*ss ]
|
||
|
* [ i*ss cs ].
|
||
|
* such that the (1,1) position of WORK is complex
|
||
|
* eigenvalue lambda with positive imaginary part. (2,2)
|
||
|
* position of WORK is the complex eigenvalue lambda
|
||
|
* with negative imaginary part.
|
||
|
*
|
||
|
MU = SQRT( ABS( WORK( 1, 2 ) ) )*
|
||
|
$ SQRT( ABS( WORK( 2, 1 ) ) )
|
||
|
DELTA = SLAPY2( MU, WORK( 2, 1 ) )
|
||
|
CS = MU / DELTA
|
||
|
SN = -WORK( 2, 1 ) / DELTA
|
||
|
*
|
||
|
* Form
|
||
|
*
|
||
|
* C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
|
||
|
* [ mu ]
|
||
|
* [ .. ]
|
||
|
* [ .. ]
|
||
|
* [ mu ]
|
||
|
* where C**T is transpose of matrix C,
|
||
|
* and RWORK is stored starting in the N+1-st column of
|
||
|
* WORK.
|
||
|
*
|
||
|
DO 30 J = 3, N
|
||
|
WORK( 2, J ) = CS*WORK( 2, J )
|
||
|
WORK( J, J ) = WORK( J, J ) - WORK( 1, 1 )
|
||
|
30 CONTINUE
|
||
|
WORK( 2, 2 ) = ZERO
|
||
|
*
|
||
|
WORK( 1, N+1 ) = TWO*MU
|
||
|
DO 40 I = 2, N - 1
|
||
|
WORK( I, N+1 ) = SN*WORK( 1, I+1 )
|
||
|
40 CONTINUE
|
||
|
N2 = 2
|
||
|
NN = 2*( N-1 )
|
||
|
END IF
|
||
|
*
|
||
|
* Estimate norm(inv(C**T))
|
||
|
*
|
||
|
EST = ZERO
|
||
|
KASE = 0
|
||
|
50 CONTINUE
|
||
|
CALL SLACN2( NN, WORK( 1, N+2 ), WORK( 1, N+4 ), IWORK,
|
||
|
$ EST, KASE, ISAVE )
|
||
|
IF( KASE.NE.0 ) THEN
|
||
|
IF( KASE.EQ.1 ) THEN
|
||
|
IF( N2.EQ.1 ) THEN
|
||
|
*
|
||
|
* Real eigenvalue: solve C**T*x = scale*c.
|
||
|
*
|
||
|
CALL SLAQTR( .TRUE., .TRUE., N-1, WORK( 2, 2 ),
|
||
|
$ LDWORK, DUMMY, DUMM, SCALE,
|
||
|
$ WORK( 1, N+4 ), WORK( 1, N+6 ),
|
||
|
$ IERR )
|
||
|
ELSE
|
||
|
*
|
||
|
* Complex eigenvalue: solve
|
||
|
* C**T*(p+iq) = scale*(c+id) in real arithmetic.
|
||
|
*
|
||
|
CALL SLAQTR( .TRUE., .FALSE., N-1, WORK( 2, 2 ),
|
||
|
$ LDWORK, WORK( 1, N+1 ), MU, SCALE,
|
||
|
$ WORK( 1, N+4 ), WORK( 1, N+6 ),
|
||
|
$ IERR )
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF( N2.EQ.1 ) THEN
|
||
|
*
|
||
|
* Real eigenvalue: solve C*x = scale*c.
|
||
|
*
|
||
|
CALL SLAQTR( .FALSE., .TRUE., N-1, WORK( 2, 2 ),
|
||
|
$ LDWORK, DUMMY, DUMM, SCALE,
|
||
|
$ WORK( 1, N+4 ), WORK( 1, N+6 ),
|
||
|
$ IERR )
|
||
|
ELSE
|
||
|
*
|
||
|
* Complex eigenvalue: solve
|
||
|
* C*(p+iq) = scale*(c+id) in real arithmetic.
|
||
|
*
|
||
|
CALL SLAQTR( .FALSE., .FALSE., N-1,
|
||
|
$ WORK( 2, 2 ), LDWORK,
|
||
|
$ WORK( 1, N+1 ), MU, SCALE,
|
||
|
$ WORK( 1, N+4 ), WORK( 1, N+6 ),
|
||
|
$ IERR )
|
||
|
*
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
GO TO 50
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
SEP( KS ) = SCALE / MAX( EST, SMLNUM )
|
||
|
IF( PAIR )
|
||
|
$ SEP( KS+1 ) = SEP( KS )
|
||
|
END IF
|
||
|
*
|
||
|
IF( PAIR )
|
||
|
$ KS = KS + 1
|
||
|
*
|
||
|
60 CONTINUE
|
||
|
RETURN
|
||
|
*
|
||
|
* End of STRSNA
|
||
|
*
|
||
|
END
|