You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
8.0 KiB
311 lines
8.0 KiB
2 years ago
|
*> \brief \b ZGEEQU
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZGEEQU + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeequ.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeequ.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeequ.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* DOUBLE PRECISION AMAX, COLCND, ROWCND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION C( * ), R( * )
|
||
|
* COMPLEX*16 A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZGEEQU computes row and column scalings intended to equilibrate an
|
||
|
*> M-by-N matrix A and reduce its condition number. R returns the row
|
||
|
*> scale factors and C the column scale factors, chosen to try to make
|
||
|
*> the largest element in each row and column of the matrix B with
|
||
|
*> elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
|
||
|
*>
|
||
|
*> R(i) and C(j) are restricted to be between SMLNUM = smallest safe
|
||
|
*> number and BIGNUM = largest safe number. Use of these scaling
|
||
|
*> factors is not guaranteed to reduce the condition number of A but
|
||
|
*> works well in practice.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> The M-by-N matrix whose equilibration factors are
|
||
|
*> to be computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] R
|
||
|
*> \verbatim
|
||
|
*> R is DOUBLE PRECISION array, dimension (M)
|
||
|
*> If INFO = 0 or INFO > M, R contains the row scale factors
|
||
|
*> for A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension (N)
|
||
|
*> If INFO = 0, C contains the column scale factors for A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ROWCND
|
||
|
*> \verbatim
|
||
|
*> ROWCND is DOUBLE PRECISION
|
||
|
*> If INFO = 0 or INFO > M, ROWCND contains the ratio of the
|
||
|
*> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
|
||
|
*> AMAX is neither too large nor too small, it is not worth
|
||
|
*> scaling by R.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] COLCND
|
||
|
*> \verbatim
|
||
|
*> COLCND is DOUBLE PRECISION
|
||
|
*> If INFO = 0, COLCND contains the ratio of the smallest
|
||
|
*> C(i) to the largest C(i). If COLCND >= 0.1, it is not
|
||
|
*> worth scaling by C.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] AMAX
|
||
|
*> \verbatim
|
||
|
*> AMAX is DOUBLE PRECISION
|
||
|
*> Absolute value of largest matrix element. If AMAX is very
|
||
|
*> close to overflow or very close to underflow, the matrix
|
||
|
*> should be scaled.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, and i is
|
||
|
*> <= M: the i-th row of A is exactly zero
|
||
|
*> > M: the (i-M)-th column of A is exactly zero
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16GEcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
DOUBLE PRECISION AMAX, COLCND, ROWCND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION C( * ), R( * )
|
||
|
COMPLEX*16 A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
DOUBLE PRECISION BIGNUM, RCMAX, RCMIN, SMLNUM
|
||
|
COMPLEX*16 ZDUM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
DOUBLE PRECISION CABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZGEEQU', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
|
||
|
ROWCND = ONE
|
||
|
COLCND = ONE
|
||
|
AMAX = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants.
|
||
|
*
|
||
|
SMLNUM = DLAMCH( 'S' )
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
* Compute row scale factors.
|
||
|
*
|
||
|
DO 10 I = 1, M
|
||
|
R( I ) = ZERO
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Find the maximum element in each row.
|
||
|
*
|
||
|
DO 30 J = 1, N
|
||
|
DO 20 I = 1, M
|
||
|
R( I ) = MAX( R( I ), CABS1( A( I, J ) ) )
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Find the maximum and minimum scale factors.
|
||
|
*
|
||
|
RCMIN = BIGNUM
|
||
|
RCMAX = ZERO
|
||
|
DO 40 I = 1, M
|
||
|
RCMAX = MAX( RCMAX, R( I ) )
|
||
|
RCMIN = MIN( RCMIN, R( I ) )
|
||
|
40 CONTINUE
|
||
|
AMAX = RCMAX
|
||
|
*
|
||
|
IF( RCMIN.EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Find the first zero scale factor and return an error code.
|
||
|
*
|
||
|
DO 50 I = 1, M
|
||
|
IF( R( I ).EQ.ZERO ) THEN
|
||
|
INFO = I
|
||
|
RETURN
|
||
|
END IF
|
||
|
50 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Invert the scale factors.
|
||
|
*
|
||
|
DO 60 I = 1, M
|
||
|
R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* Compute ROWCND = min(R(I)) / max(R(I))
|
||
|
*
|
||
|
ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
|
||
|
END IF
|
||
|
*
|
||
|
* Compute column scale factors
|
||
|
*
|
||
|
DO 70 J = 1, N
|
||
|
C( J ) = ZERO
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
* Find the maximum element in each column,
|
||
|
* assuming the row scaling computed above.
|
||
|
*
|
||
|
DO 90 J = 1, N
|
||
|
DO 80 I = 1, M
|
||
|
C( J ) = MAX( C( J ), CABS1( A( I, J ) )*R( I ) )
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Find the maximum and minimum scale factors.
|
||
|
*
|
||
|
RCMIN = BIGNUM
|
||
|
RCMAX = ZERO
|
||
|
DO 100 J = 1, N
|
||
|
RCMIN = MIN( RCMIN, C( J ) )
|
||
|
RCMAX = MAX( RCMAX, C( J ) )
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
IF( RCMIN.EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Find the first zero scale factor and return an error code.
|
||
|
*
|
||
|
DO 110 J = 1, N
|
||
|
IF( C( J ).EQ.ZERO ) THEN
|
||
|
INFO = M + J
|
||
|
RETURN
|
||
|
END IF
|
||
|
110 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Invert the scale factors.
|
||
|
*
|
||
|
DO 120 J = 1, N
|
||
|
C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
|
||
|
120 CONTINUE
|
||
|
*
|
||
|
* Compute COLCND = min(C(J)) / max(C(J))
|
||
|
*
|
||
|
COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZGEEQU
|
||
|
*
|
||
|
END
|