You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
5.2 KiB
192 lines
5.2 KiB
2 years ago
|
*> \brief \b ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZGERQ2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerq2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerq2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerq2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
|
||
|
*> A = R * Q.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> On entry, the m by n matrix A.
|
||
|
*> On exit, if m <= n, the upper triangle of the subarray
|
||
|
*> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
|
||
|
*> if m >= n, the elements on and above the (m-n)-th subdiagonal
|
||
|
*> contain the m by n upper trapezoidal matrix R; the remaining
|
||
|
*> elements, with the array TAU, represent the unitary matrix
|
||
|
*> Q as a product of elementary reflectors (see Further
|
||
|
*> Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is COMPLEX*16 array, dimension (min(M,N))
|
||
|
*> The scalar factors of the elementary reflectors (see Further
|
||
|
*> Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16GEcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrix Q is represented as a product of elementary reflectors
|
||
|
*>
|
||
|
*> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
|
||
|
*>
|
||
|
*> Each H(i) has the form
|
||
|
*>
|
||
|
*> H(i) = I - tau * v * v**H
|
||
|
*>
|
||
|
*> where tau is a complex scalar, and v is a complex vector with
|
||
|
*> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
|
||
|
*> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX*16 ONE
|
||
|
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, K
|
||
|
COMPLEX*16 ALPHA
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZLACGV, ZLARF, ZLARFG
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZGERQ2', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
K = MIN( M, N )
|
||
|
*
|
||
|
DO 10 I = K, 1, -1
|
||
|
*
|
||
|
* Generate elementary reflector H(i) to annihilate
|
||
|
* A(m-k+i,1:n-k+i-1)
|
||
|
*
|
||
|
CALL ZLACGV( N-K+I, A( M-K+I, 1 ), LDA )
|
||
|
ALPHA = A( M-K+I, N-K+I )
|
||
|
CALL ZLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA, TAU( I ) )
|
||
|
*
|
||
|
* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
|
||
|
*
|
||
|
A( M-K+I, N-K+I ) = ONE
|
||
|
CALL ZLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
|
||
|
$ TAU( I ), A, LDA, WORK )
|
||
|
A( M-K+I, N-K+I ) = ALPHA
|
||
|
CALL ZLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
|
||
|
10 CONTINUE
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZGERQ2
|
||
|
*
|
||
|
END
|