You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
369 lines
11 KiB
369 lines
11 KiB
2 years ago
|
*> \brief \b ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZLAED0 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaed0.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaed0.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaed0.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
|
||
|
* IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDQ, LDQS, N, QSIZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IWORK( * )
|
||
|
* DOUBLE PRECISION D( * ), E( * ), RWORK( * )
|
||
|
* COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> Using the divide and conquer method, ZLAED0 computes all eigenvalues
|
||
|
*> of a symmetric tridiagonal matrix which is one diagonal block of
|
||
|
*> those from reducing a dense or band Hermitian matrix and
|
||
|
*> corresponding eigenvectors of the dense or band matrix.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] QSIZ
|
||
|
*> \verbatim
|
||
|
*> QSIZ is INTEGER
|
||
|
*> The dimension of the unitary matrix used to reduce
|
||
|
*> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, the diagonal elements of the tridiagonal matrix.
|
||
|
*> On exit, the eigenvalues in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] E
|
||
|
*> \verbatim
|
||
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> On entry, the off-diagonal elements of the tridiagonal matrix.
|
||
|
*> On exit, E has been destroyed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is COMPLEX*16 array, dimension (LDQ,N)
|
||
|
*> On entry, Q must contain an QSIZ x N matrix whose columns
|
||
|
*> unitarily orthonormal. It is a part of the unitary matrix
|
||
|
*> that reduces the full dense Hermitian matrix to a
|
||
|
*> (reducible) symmetric tridiagonal matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ
|
||
|
*> \verbatim
|
||
|
*> LDQ is INTEGER
|
||
|
*> The leading dimension of the array Q. LDQ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array,
|
||
|
*> the dimension of IWORK must be at least
|
||
|
*> 6 + 6*N + 5*N*lg N
|
||
|
*> ( lg( N ) = smallest integer k
|
||
|
*> such that 2^k >= N )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array,
|
||
|
*> dimension (1 + 3*N + 2*N*lg N + 3*N**2)
|
||
|
*> ( lg( N ) = smallest integer k
|
||
|
*> such that 2^k >= N )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] QSTORE
|
||
|
*> \verbatim
|
||
|
*> QSTORE is COMPLEX*16 array, dimension (LDQS, N)
|
||
|
*> Used to store parts of
|
||
|
*> the eigenvector matrix when the updating matrix multiplies
|
||
|
*> take place.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQS
|
||
|
*> \verbatim
|
||
|
*> LDQS is INTEGER
|
||
|
*> The leading dimension of the array QSTORE.
|
||
|
*> LDQS >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> > 0: The algorithm failed to compute an eigenvalue while
|
||
|
*> working on the submatrix lying in rows and columns
|
||
|
*> INFO/(N+1) through mod(INFO,N+1).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16OTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
|
||
|
$ IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDQ, LDQS, N, QSIZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IWORK( * )
|
||
|
DOUBLE PRECISION D( * ), E( * ), RWORK( * )
|
||
|
COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* Warning: N could be as big as QSIZ!
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION TWO
|
||
|
PARAMETER ( TWO = 2.D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
|
||
|
$ IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
|
||
|
$ J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
|
||
|
$ SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
|
||
|
DOUBLE PRECISION TEMP
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, DSTEQR, XERBLA, ZCOPY, ZLACRM, ZLAED7
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL ILAENV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, INT, LOG, MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
*
|
||
|
* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
|
||
|
* INFO = -1
|
||
|
* ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
|
||
|
* $ THEN
|
||
|
IF( QSIZ.LT.MAX( 0, N ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZLAED0', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
SMLSIZ = ILAENV( 9, 'ZLAED0', ' ', 0, 0, 0, 0 )
|
||
|
*
|
||
|
* Determine the size and placement of the submatrices, and save in
|
||
|
* the leading elements of IWORK.
|
||
|
*
|
||
|
IWORK( 1 ) = N
|
||
|
SUBPBS = 1
|
||
|
TLVLS = 0
|
||
|
10 CONTINUE
|
||
|
IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
|
||
|
DO 20 J = SUBPBS, 1, -1
|
||
|
IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
|
||
|
IWORK( 2*J-1 ) = IWORK( J ) / 2
|
||
|
20 CONTINUE
|
||
|
TLVLS = TLVLS + 1
|
||
|
SUBPBS = 2*SUBPBS
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
DO 30 J = 2, SUBPBS
|
||
|
IWORK( J ) = IWORK( J ) + IWORK( J-1 )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
|
||
|
* using rank-1 modifications (cuts).
|
||
|
*
|
||
|
SPM1 = SUBPBS - 1
|
||
|
DO 40 I = 1, SPM1
|
||
|
SUBMAT = IWORK( I ) + 1
|
||
|
SMM1 = SUBMAT - 1
|
||
|
D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
|
||
|
D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
INDXQ = 4*N + 3
|
||
|
*
|
||
|
* Set up workspaces for eigenvalues only/accumulate new vectors
|
||
|
* routine
|
||
|
*
|
||
|
TEMP = LOG( DBLE( N ) ) / LOG( TWO )
|
||
|
LGN = INT( TEMP )
|
||
|
IF( 2**LGN.LT.N )
|
||
|
$ LGN = LGN + 1
|
||
|
IF( 2**LGN.LT.N )
|
||
|
$ LGN = LGN + 1
|
||
|
IPRMPT = INDXQ + N + 1
|
||
|
IPERM = IPRMPT + N*LGN
|
||
|
IQPTR = IPERM + N*LGN
|
||
|
IGIVPT = IQPTR + N + 2
|
||
|
IGIVCL = IGIVPT + N*LGN
|
||
|
*
|
||
|
IGIVNM = 1
|
||
|
IQ = IGIVNM + 2*N*LGN
|
||
|
IWREM = IQ + N**2 + 1
|
||
|
* Initialize pointers
|
||
|
DO 50 I = 0, SUBPBS
|
||
|
IWORK( IPRMPT+I ) = 1
|
||
|
IWORK( IGIVPT+I ) = 1
|
||
|
50 CONTINUE
|
||
|
IWORK( IQPTR ) = 1
|
||
|
*
|
||
|
* Solve each submatrix eigenproblem at the bottom of the divide and
|
||
|
* conquer tree.
|
||
|
*
|
||
|
CURR = 0
|
||
|
DO 70 I = 0, SPM1
|
||
|
IF( I.EQ.0 ) THEN
|
||
|
SUBMAT = 1
|
||
|
MATSIZ = IWORK( 1 )
|
||
|
ELSE
|
||
|
SUBMAT = IWORK( I ) + 1
|
||
|
MATSIZ = IWORK( I+1 ) - IWORK( I )
|
||
|
END IF
|
||
|
LL = IQ - 1 + IWORK( IQPTR+CURR )
|
||
|
CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
|
||
|
$ RWORK( LL ), MATSIZ, RWORK, INFO )
|
||
|
CALL ZLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
|
||
|
$ MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
|
||
|
$ RWORK( IWREM ) )
|
||
|
IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
|
||
|
CURR = CURR + 1
|
||
|
IF( INFO.GT.0 ) THEN
|
||
|
INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
|
||
|
RETURN
|
||
|
END IF
|
||
|
K = 1
|
||
|
DO 60 J = SUBMAT, IWORK( I+1 )
|
||
|
IWORK( INDXQ+J ) = K
|
||
|
K = K + 1
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
* Successively merge eigensystems of adjacent submatrices
|
||
|
* into eigensystem for the corresponding larger matrix.
|
||
|
*
|
||
|
* while ( SUBPBS > 1 )
|
||
|
*
|
||
|
CURLVL = 1
|
||
|
80 CONTINUE
|
||
|
IF( SUBPBS.GT.1 ) THEN
|
||
|
SPM2 = SUBPBS - 2
|
||
|
DO 90 I = 0, SPM2, 2
|
||
|
IF( I.EQ.0 ) THEN
|
||
|
SUBMAT = 1
|
||
|
MATSIZ = IWORK( 2 )
|
||
|
MSD2 = IWORK( 1 )
|
||
|
CURPRB = 0
|
||
|
ELSE
|
||
|
SUBMAT = IWORK( I ) + 1
|
||
|
MATSIZ = IWORK( I+2 ) - IWORK( I )
|
||
|
MSD2 = MATSIZ / 2
|
||
|
CURPRB = CURPRB + 1
|
||
|
END IF
|
||
|
*
|
||
|
* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
|
||
|
* into an eigensystem of size MATSIZ. ZLAED7 handles the case
|
||
|
* when the eigenvectors of a full or band Hermitian matrix (which
|
||
|
* was reduced to tridiagonal form) are desired.
|
||
|
*
|
||
|
* I am free to use Q as a valuable working space until Loop 150.
|
||
|
*
|
||
|
CALL ZLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
|
||
|
$ D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
|
||
|
$ E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
|
||
|
$ RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
|
||
|
$ IWORK( IPERM ), IWORK( IGIVPT ),
|
||
|
$ IWORK( IGIVCL ), RWORK( IGIVNM ),
|
||
|
$ Q( 1, SUBMAT ), RWORK( IWREM ),
|
||
|
$ IWORK( SUBPBS+1 ), INFO )
|
||
|
IF( INFO.GT.0 ) THEN
|
||
|
INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
|
||
|
RETURN
|
||
|
END IF
|
||
|
IWORK( I / 2+1 ) = IWORK( I+2 )
|
||
|
90 CONTINUE
|
||
|
SUBPBS = SUBPBS / 2
|
||
|
CURLVL = CURLVL + 1
|
||
|
GO TO 80
|
||
|
END IF
|
||
|
*
|
||
|
* end while
|
||
|
*
|
||
|
* Re-merge the eigenvalues/vectors which were deflated at the final
|
||
|
* merge step.
|
||
|
*
|
||
|
DO 100 I = 1, N
|
||
|
J = IWORK( INDXQ+I )
|
||
|
RWORK( I ) = D( J )
|
||
|
CALL ZCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
|
||
|
100 CONTINUE
|
||
|
CALL DCOPY( N, RWORK, 1, D, 1 )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLAED0
|
||
|
*
|
||
|
END
|