You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1232 lines
42 KiB
1232 lines
42 KiB
2 years ago
|
*> \brief \b ZLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZLAHEF_RK + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_rk.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_rk.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_rk.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER INFO, KB, LDA, LDW, N, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* COMPLEX*16 A( LDA, * ), E( * ), W( LDW, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*> ZLAHEF_RK computes a partial factorization of a complex Hermitian
|
||
|
*> matrix A using the bounded Bunch-Kaufman (rook) diagonal
|
||
|
*> pivoting method. The partial factorization has the form:
|
||
|
*>
|
||
|
*> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
|
||
|
*> ( 0 U22 ) ( 0 D ) ( U12**H U22**H )
|
||
|
*>
|
||
|
*> A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L',
|
||
|
*> ( L21 I ) ( 0 A22 ) ( 0 I )
|
||
|
*>
|
||
|
*> where the order of D is at most NB. The actual order is returned in
|
||
|
*> the argument KB, and is either NB or NB-1, or N if N <= NB.
|
||
|
*>
|
||
|
*> ZLAHEF_RK is an auxiliary routine called by ZHETRF_RK. It uses
|
||
|
*> blocked code (calling Level 3 BLAS) to update the submatrix
|
||
|
*> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the upper or lower triangular part of the
|
||
|
*> Hermitian matrix A is stored:
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB
|
||
|
*> \verbatim
|
||
|
*> NB is INTEGER
|
||
|
*> The maximum number of columns of the matrix A that should be
|
||
|
*> factored. NB should be at least 2 to allow for 2-by-2 pivot
|
||
|
*> blocks.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] KB
|
||
|
*> \verbatim
|
||
|
*> KB is INTEGER
|
||
|
*> The number of columns of A that were actually factored.
|
||
|
*> KB is either NB-1 or NB, or N if N <= NB.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> On entry, the Hermitian matrix A.
|
||
|
*> If UPLO = 'U': the leading N-by-N upper triangular part
|
||
|
*> of A contains the upper triangular part of the matrix A,
|
||
|
*> and the strictly lower triangular part of A is not
|
||
|
*> referenced.
|
||
|
*>
|
||
|
*> If UPLO = 'L': the leading N-by-N lower triangular part
|
||
|
*> of A contains the lower triangular part of the matrix A,
|
||
|
*> and the strictly upper triangular part of A is not
|
||
|
*> referenced.
|
||
|
*>
|
||
|
*> On exit, contains:
|
||
|
*> a) ONLY diagonal elements of the Hermitian block diagonal
|
||
|
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
|
||
|
*> (superdiagonal (or subdiagonal) elements of D
|
||
|
*> are stored on exit in array E), and
|
||
|
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
|
||
|
*> If UPLO = 'L': factor L in the subdiagonal part of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX*16 array, dimension (N)
|
||
|
*> On exit, contains the superdiagonal (or subdiagonal)
|
||
|
*> elements of the Hermitian block diagonal matrix D
|
||
|
*> with 1-by-1 or 2-by-2 diagonal blocks, where
|
||
|
*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
|
||
|
*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
|
||
|
*>
|
||
|
*> NOTE: For 1-by-1 diagonal block D(k), where
|
||
|
*> 1 <= k <= N, the element E(k) is set to 0 in both
|
||
|
*> UPLO = 'U' or UPLO = 'L' cases.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> IPIV describes the permutation matrix P in the factorization
|
||
|
*> of matrix A as follows. The absolute value of IPIV(k)
|
||
|
*> represents the index of row and column that were
|
||
|
*> interchanged with the k-th row and column. The value of UPLO
|
||
|
*> describes the order in which the interchanges were applied.
|
||
|
*> Also, the sign of IPIV represents the block structure of
|
||
|
*> the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
|
||
|
*> diagonal blocks which correspond to 1 or 2 interchanges
|
||
|
*> at each factorization step.
|
||
|
*>
|
||
|
*> If UPLO = 'U',
|
||
|
*> ( in factorization order, k decreases from N to 1 ):
|
||
|
*> a) A single positive entry IPIV(k) > 0 means:
|
||
|
*> D(k,k) is a 1-by-1 diagonal block.
|
||
|
*> If IPIV(k) != k, rows and columns k and IPIV(k) were
|
||
|
*> interchanged in the submatrix A(1:N,N-KB+1:N);
|
||
|
*> If IPIV(k) = k, no interchange occurred.
|
||
|
*>
|
||
|
*>
|
||
|
*> b) A pair of consecutive negative entries
|
||
|
*> IPIV(k) < 0 and IPIV(k-1) < 0 means:
|
||
|
*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
|
||
|
*> (NOTE: negative entries in IPIV appear ONLY in pairs).
|
||
|
*> 1) If -IPIV(k) != k, rows and columns
|
||
|
*> k and -IPIV(k) were interchanged
|
||
|
*> in the matrix A(1:N,N-KB+1:N).
|
||
|
*> If -IPIV(k) = k, no interchange occurred.
|
||
|
*> 2) If -IPIV(k-1) != k-1, rows and columns
|
||
|
*> k-1 and -IPIV(k-1) were interchanged
|
||
|
*> in the submatrix A(1:N,N-KB+1:N).
|
||
|
*> If -IPIV(k-1) = k-1, no interchange occurred.
|
||
|
*>
|
||
|
*> c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
|
||
|
*>
|
||
|
*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
|
||
|
*>
|
||
|
*> If UPLO = 'L',
|
||
|
*> ( in factorization order, k increases from 1 to N ):
|
||
|
*> a) A single positive entry IPIV(k) > 0 means:
|
||
|
*> D(k,k) is a 1-by-1 diagonal block.
|
||
|
*> If IPIV(k) != k, rows and columns k and IPIV(k) were
|
||
|
*> interchanged in the submatrix A(1:N,1:KB).
|
||
|
*> If IPIV(k) = k, no interchange occurred.
|
||
|
*>
|
||
|
*> b) A pair of consecutive negative entries
|
||
|
*> IPIV(k) < 0 and IPIV(k+1) < 0 means:
|
||
|
*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
|
||
|
*> (NOTE: negative entries in IPIV appear ONLY in pairs).
|
||
|
*> 1) If -IPIV(k) != k, rows and columns
|
||
|
*> k and -IPIV(k) were interchanged
|
||
|
*> in the submatrix A(1:N,1:KB).
|
||
|
*> If -IPIV(k) = k, no interchange occurred.
|
||
|
*> 2) If -IPIV(k+1) != k+1, rows and columns
|
||
|
*> k-1 and -IPIV(k-1) were interchanged
|
||
|
*> in the submatrix A(1:N,1:KB).
|
||
|
*> If -IPIV(k+1) = k+1, no interchange occurred.
|
||
|
*>
|
||
|
*> c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
|
||
|
*>
|
||
|
*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is COMPLEX*16 array, dimension (LDW,NB)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDW
|
||
|
*> \verbatim
|
||
|
*> LDW is INTEGER
|
||
|
*> The leading dimension of the array W. LDW >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*>
|
||
|
*> < 0: If INFO = -k, the k-th argument had an illegal value
|
||
|
*>
|
||
|
*> > 0: If INFO = k, the matrix A is singular, because:
|
||
|
*> If UPLO = 'U': column k in the upper
|
||
|
*> triangular part of A contains all zeros.
|
||
|
*> If UPLO = 'L': column k in the lower
|
||
|
*> triangular part of A contains all zeros.
|
||
|
*>
|
||
|
*> Therefore D(k,k) is exactly zero, and superdiagonal
|
||
|
*> elements of column k of U (or subdiagonal elements of
|
||
|
*> column k of L ) are all zeros. The factorization has
|
||
|
*> been completed, but the block diagonal matrix D is
|
||
|
*> exactly singular, and division by zero will occur if
|
||
|
*> it is used to solve a system of equations.
|
||
|
*>
|
||
|
*> NOTE: INFO only stores the first occurrence of
|
||
|
*> a singularity, any subsequent occurrence of singularity
|
||
|
*> is not stored in INFO even though the factorization
|
||
|
*> always completes.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16HEcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> December 2016, Igor Kozachenko,
|
||
|
*> Computer Science Division,
|
||
|
*> University of California, Berkeley
|
||
|
*>
|
||
|
*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
|
||
|
*> School of Mathematics,
|
||
|
*> University of Manchester
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER INFO, KB, LDA, LDW, N, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
COMPLEX*16 A( LDA, * ), W( LDW, * ), E( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
COMPLEX*16 CONE
|
||
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
DOUBLE PRECISION EIGHT, SEVTEN
|
||
|
PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
|
||
|
COMPLEX*16 CZERO
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL DONE
|
||
|
INTEGER IMAX, ITEMP, II, J, JB, JJ, JMAX, K, KK, KKW,
|
||
|
$ KP, KSTEP, KW, P
|
||
|
DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, DTEMP, R1, ROWMAX, T,
|
||
|
$ SFMIN
|
||
|
COMPLEX*16 D11, D21, D22, Z
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER IZAMAX
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL LSAME, IZAMAX, DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
DOUBLE PRECISION CABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
*
|
||
|
* Initialize ALPHA for use in choosing pivot block size.
|
||
|
*
|
||
|
ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
|
||
|
*
|
||
|
* Compute machine safe minimum
|
||
|
*
|
||
|
SFMIN = DLAMCH( 'S' )
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
*
|
||
|
* Factorize the trailing columns of A using the upper triangle
|
||
|
* of A and working backwards, and compute the matrix W = U12*D
|
||
|
* for use in updating A11 (note that conjg(W) is actually stored)
|
||
|
* Initialize the first entry of array E, where superdiagonal
|
||
|
* elements of D are stored
|
||
|
*
|
||
|
E( 1 ) = CZERO
|
||
|
*
|
||
|
* K is the main loop index, decreasing from N in steps of 1 or 2
|
||
|
*
|
||
|
K = N
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* KW is the column of W which corresponds to column K of A
|
||
|
*
|
||
|
KW = NB + K - N
|
||
|
*
|
||
|
* Exit from loop
|
||
|
*
|
||
|
IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
|
||
|
$ GO TO 30
|
||
|
*
|
||
|
KSTEP = 1
|
||
|
P = K
|
||
|
*
|
||
|
* Copy column K of A to column KW of W and update it
|
||
|
*
|
||
|
IF( K.GT.1 )
|
||
|
$ CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
|
||
|
W( K, KW ) = DBLE( A( K, K ) )
|
||
|
IF( K.LT.N ) THEN
|
||
|
CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
|
||
|
$ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
|
||
|
W( K, KW ) = DBLE( W( K, KW ) )
|
||
|
END IF
|
||
|
*
|
||
|
* Determine rows and columns to be interchanged and whether
|
||
|
* a 1-by-1 or 2-by-2 pivot block will be used
|
||
|
*
|
||
|
ABSAKK = ABS( DBLE( W( K, KW ) ) )
|
||
|
*
|
||
|
* IMAX is the row-index of the largest off-diagonal element in
|
||
|
* column K, and COLMAX is its absolute value.
|
||
|
* Determine both COLMAX and IMAX.
|
||
|
*
|
||
|
IF( K.GT.1 ) THEN
|
||
|
IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
|
||
|
COLMAX = CABS1( W( IMAX, KW ) )
|
||
|
ELSE
|
||
|
COLMAX = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Column K is zero or underflow: set INFO and continue
|
||
|
*
|
||
|
IF( INFO.EQ.0 )
|
||
|
$ INFO = K
|
||
|
KP = K
|
||
|
A( K, K ) = DBLE( W( K, KW ) )
|
||
|
IF( K.GT.1 )
|
||
|
$ CALL ZCOPY( K-1, W( 1, KW ), 1, A( 1, K ), 1 )
|
||
|
*
|
||
|
* Set E( K ) to zero
|
||
|
*
|
||
|
IF( K.GT.1 )
|
||
|
$ E( K ) = CZERO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* ============================================================
|
||
|
*
|
||
|
* BEGIN pivot search
|
||
|
*
|
||
|
* Case(1)
|
||
|
* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
|
||
|
* (used to handle NaN and Inf)
|
||
|
IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
|
||
|
*
|
||
|
* no interchange, use 1-by-1 pivot block
|
||
|
*
|
||
|
KP = K
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Lop until pivot found
|
||
|
*
|
||
|
DONE = .FALSE.
|
||
|
*
|
||
|
12 CONTINUE
|
||
|
*
|
||
|
* BEGIN pivot search loop body
|
||
|
*
|
||
|
*
|
||
|
* Copy column IMAX to column KW-1 of W and update it
|
||
|
*
|
||
|
IF( IMAX.GT.1 )
|
||
|
$ CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
|
||
|
$ 1 )
|
||
|
W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
|
||
|
*
|
||
|
CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
|
||
|
$ W( IMAX+1, KW-1 ), 1 )
|
||
|
CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
|
||
|
*
|
||
|
IF( K.LT.N ) THEN
|
||
|
CALL ZGEMV( 'No transpose', K, N-K, -CONE,
|
||
|
$ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
|
||
|
$ CONE, W( 1, KW-1 ), 1 )
|
||
|
W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
|
||
|
END IF
|
||
|
*
|
||
|
* JMAX is the column-index of the largest off-diagonal
|
||
|
* element in row IMAX, and ROWMAX is its absolute value.
|
||
|
* Determine both ROWMAX and JMAX.
|
||
|
*
|
||
|
IF( IMAX.NE.K ) THEN
|
||
|
JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
|
||
|
$ 1 )
|
||
|
ROWMAX = CABS1( W( JMAX, KW-1 ) )
|
||
|
ELSE
|
||
|
ROWMAX = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
IF( IMAX.GT.1 ) THEN
|
||
|
ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
|
||
|
DTEMP = CABS1( W( ITEMP, KW-1 ) )
|
||
|
IF( DTEMP.GT.ROWMAX ) THEN
|
||
|
ROWMAX = DTEMP
|
||
|
JMAX = ITEMP
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Case(2)
|
||
|
* Equivalent to testing for
|
||
|
* ABS( DBLE( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
|
||
|
* (used to handle NaN and Inf)
|
||
|
*
|
||
|
IF( .NOT.( ABS( DBLE( W( IMAX,KW-1 ) ) )
|
||
|
$ .LT.ALPHA*ROWMAX ) ) THEN
|
||
|
*
|
||
|
* interchange rows and columns K and IMAX,
|
||
|
* use 1-by-1 pivot block
|
||
|
*
|
||
|
KP = IMAX
|
||
|
*
|
||
|
* copy column KW-1 of W to column KW of W
|
||
|
*
|
||
|
CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
|
||
|
*
|
||
|
DONE = .TRUE.
|
||
|
*
|
||
|
* Case(3)
|
||
|
* Equivalent to testing for ROWMAX.EQ.COLMAX,
|
||
|
* (used to handle NaN and Inf)
|
||
|
*
|
||
|
ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
|
||
|
$ THEN
|
||
|
*
|
||
|
* interchange rows and columns K-1 and IMAX,
|
||
|
* use 2-by-2 pivot block
|
||
|
*
|
||
|
KP = IMAX
|
||
|
KSTEP = 2
|
||
|
DONE = .TRUE.
|
||
|
*
|
||
|
* Case(4)
|
||
|
ELSE
|
||
|
*
|
||
|
* Pivot not found: set params and repeat
|
||
|
*
|
||
|
P = IMAX
|
||
|
COLMAX = ROWMAX
|
||
|
IMAX = JMAX
|
||
|
*
|
||
|
* Copy updated JMAXth (next IMAXth) column to Kth of W
|
||
|
*
|
||
|
CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
*
|
||
|
* END pivot search loop body
|
||
|
*
|
||
|
IF( .NOT.DONE ) GOTO 12
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* END pivot search
|
||
|
*
|
||
|
* ============================================================
|
||
|
*
|
||
|
* KK is the column of A where pivoting step stopped
|
||
|
*
|
||
|
KK = K - KSTEP + 1
|
||
|
*
|
||
|
* KKW is the column of W which corresponds to column KK of A
|
||
|
*
|
||
|
KKW = NB + KK - N
|
||
|
*
|
||
|
* Interchange rows and columns P and K.
|
||
|
* Updated column P is already stored in column KW of W.
|
||
|
*
|
||
|
IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
|
||
|
*
|
||
|
* Copy non-updated column K to column P of submatrix A
|
||
|
* at step K. No need to copy element into columns
|
||
|
* K and K-1 of A for 2-by-2 pivot, since these columns
|
||
|
* will be later overwritten.
|
||
|
*
|
||
|
A( P, P ) = DBLE( A( K, K ) )
|
||
|
CALL ZCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
|
||
|
$ LDA )
|
||
|
CALL ZLACGV( K-1-P, A( P, P+1 ), LDA )
|
||
|
IF( P.GT.1 )
|
||
|
$ CALL ZCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
|
||
|
*
|
||
|
* Interchange rows K and P in the last K+1 to N columns of A
|
||
|
* (columns K and K-1 of A for 2-by-2 pivot will be
|
||
|
* later overwritten). Interchange rows K and P
|
||
|
* in last KKW to NB columns of W.
|
||
|
*
|
||
|
IF( K.LT.N )
|
||
|
$ CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
|
||
|
$ LDA )
|
||
|
CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ),
|
||
|
$ LDW )
|
||
|
END IF
|
||
|
*
|
||
|
* Interchange rows and columns KP and KK.
|
||
|
* Updated column KP is already stored in column KKW of W.
|
||
|
*
|
||
|
IF( KP.NE.KK ) THEN
|
||
|
*
|
||
|
* Copy non-updated column KK to column KP of submatrix A
|
||
|
* at step K. No need to copy element into column K
|
||
|
* (or K and K-1 for 2-by-2 pivot) of A, since these columns
|
||
|
* will be later overwritten.
|
||
|
*
|
||
|
A( KP, KP ) = DBLE( A( KK, KK ) )
|
||
|
CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
|
||
|
$ LDA )
|
||
|
CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
|
||
|
IF( KP.GT.1 )
|
||
|
$ CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
|
||
|
*
|
||
|
* Interchange rows KK and KP in last K+1 to N columns of A
|
||
|
* (columns K (or K and K-1 for 2-by-2 pivot) of A will be
|
||
|
* later overwritten). Interchange rows KK and KP
|
||
|
* in last KKW to NB columns of W.
|
||
|
*
|
||
|
IF( K.LT.N )
|
||
|
$ CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
|
||
|
$ LDA )
|
||
|
CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
|
||
|
$ LDW )
|
||
|
END IF
|
||
|
*
|
||
|
IF( KSTEP.EQ.1 ) THEN
|
||
|
*
|
||
|
* 1-by-1 pivot block D(k): column kw of W now holds
|
||
|
*
|
||
|
* W(kw) = U(k)*D(k),
|
||
|
*
|
||
|
* where U(k) is the k-th column of U
|
||
|
*
|
||
|
* (1) Store subdiag. elements of column U(k)
|
||
|
* and 1-by-1 block D(k) in column k of A.
|
||
|
* (NOTE: Diagonal element U(k,k) is a UNIT element
|
||
|
* and not stored)
|
||
|
* A(k,k) := D(k,k) = W(k,kw)
|
||
|
* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
|
||
|
*
|
||
|
* (NOTE: No need to use for Hermitian matrix
|
||
|
* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
|
||
|
* element D(k,k) from W (potentially saves only one load))
|
||
|
CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
|
||
|
IF( K.GT.1 ) THEN
|
||
|
*
|
||
|
* (NOTE: No need to check if A(k,k) is NOT ZERO,
|
||
|
* since that was ensured earlier in pivot search:
|
||
|
* case A(k,k) = 0 falls into 2x2 pivot case(3))
|
||
|
*
|
||
|
* Handle division by a small number
|
||
|
*
|
||
|
T = DBLE( A( K, K ) )
|
||
|
IF( ABS( T ).GE.SFMIN ) THEN
|
||
|
R1 = ONE / T
|
||
|
CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
|
||
|
ELSE
|
||
|
DO 14 II = 1, K-1
|
||
|
A( II, K ) = A( II, K ) / T
|
||
|
14 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* (2) Conjugate column W(kw)
|
||
|
*
|
||
|
CALL ZLACGV( K-1, W( 1, KW ), 1 )
|
||
|
*
|
||
|
* Store the superdiagonal element of D in array E
|
||
|
*
|
||
|
E( K ) = CZERO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
|
||
|
*
|
||
|
* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
|
||
|
*
|
||
|
* where U(k) and U(k-1) are the k-th and (k-1)-th columns
|
||
|
* of U
|
||
|
*
|
||
|
* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
|
||
|
* block D(k-1:k,k-1:k) in columns k-1 and k of A.
|
||
|
* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
|
||
|
* block and not stored)
|
||
|
* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
|
||
|
* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
|
||
|
* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
|
||
|
*
|
||
|
IF( K.GT.2 ) THEN
|
||
|
*
|
||
|
* Factor out the columns of the inverse of 2-by-2 pivot
|
||
|
* block D, so that each column contains 1, to reduce the
|
||
|
* number of FLOPS when we multiply panel
|
||
|
* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
|
||
|
*
|
||
|
* D**(-1) = ( d11 cj(d21) )**(-1) =
|
||
|
* ( d21 d22 )
|
||
|
*
|
||
|
* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
|
||
|
* ( (-d21) ( d11 ) )
|
||
|
*
|
||
|
* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
|
||
|
*
|
||
|
* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
|
||
|
* ( ( -1 ) ( d11/conj(d21) ) )
|
||
|
*
|
||
|
* = 1/(|d21|**2) * 1/(D22*D11-1) *
|
||
|
*
|
||
|
* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
||
|
* ( ( -1 ) ( D22 ) )
|
||
|
*
|
||
|
* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
||
|
* ( ( -1 ) ( D22 ) )
|
||
|
*
|
||
|
* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
|
||
|
* ( ( -1 ) ( D22 ) )
|
||
|
*
|
||
|
* Handle division by a small number. (NOTE: order of
|
||
|
* operations is important)
|
||
|
*
|
||
|
* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
|
||
|
* ( (( -1 ) ) (( D22 ) ) ),
|
||
|
*
|
||
|
* where D11 = d22/d21,
|
||
|
* D22 = d11/conj(d21),
|
||
|
* D21 = d21,
|
||
|
* T = 1/(D22*D11-1).
|
||
|
*
|
||
|
* (NOTE: No need to check for division by ZERO,
|
||
|
* since that was ensured earlier in pivot search:
|
||
|
* (a) d21 != 0 in 2x2 pivot case(4),
|
||
|
* since |d21| should be larger than |d11| and |d22|;
|
||
|
* (b) (D22*D11 - 1) != 0, since from (a),
|
||
|
* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
|
||
|
*
|
||
|
D21 = W( K-1, KW )
|
||
|
D11 = W( K, KW ) / DCONJG( D21 )
|
||
|
D22 = W( K-1, KW-1 ) / D21
|
||
|
T = ONE / ( DBLE( D11*D22 )-ONE )
|
||
|
*
|
||
|
* Update elements in columns A(k-1) and A(k) as
|
||
|
* dot products of rows of ( W(kw-1) W(kw) ) and columns
|
||
|
* of D**(-1)
|
||
|
*
|
||
|
DO 20 J = 1, K - 2
|
||
|
A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
|
||
|
$ D21 )
|
||
|
A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
|
||
|
$ DCONJG( D21 ) )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Copy diagonal elements of D(K) to A,
|
||
|
* copy superdiagonal element of D(K) to E(K) and
|
||
|
* ZERO out superdiagonal entry of A
|
||
|
*
|
||
|
A( K-1, K-1 ) = W( K-1, KW-1 )
|
||
|
A( K-1, K ) = CZERO
|
||
|
A( K, K ) = W( K, KW )
|
||
|
E( K ) = W( K-1, KW )
|
||
|
E( K-1 ) = CZERO
|
||
|
*
|
||
|
* (2) Conjugate columns W(kw) and W(kw-1)
|
||
|
*
|
||
|
CALL ZLACGV( K-1, W( 1, KW ), 1 )
|
||
|
CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* End column K is nonsingular
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Store details of the interchanges in IPIV
|
||
|
*
|
||
|
IF( KSTEP.EQ.1 ) THEN
|
||
|
IPIV( K ) = KP
|
||
|
ELSE
|
||
|
IPIV( K ) = -P
|
||
|
IPIV( K-1 ) = -KP
|
||
|
END IF
|
||
|
*
|
||
|
* Decrease K and return to the start of the main loop
|
||
|
*
|
||
|
K = K - KSTEP
|
||
|
GO TO 10
|
||
|
*
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Update the upper triangle of A11 (= A(1:k,1:k)) as
|
||
|
*
|
||
|
* A11 := A11 - U12*D*U12**H = A11 - U12*W**H
|
||
|
*
|
||
|
* computing blocks of NB columns at a time (note that conjg(W) is
|
||
|
* actually stored)
|
||
|
*
|
||
|
DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
|
||
|
JB = MIN( NB, K-J+1 )
|
||
|
*
|
||
|
* Update the upper triangle of the diagonal block
|
||
|
*
|
||
|
DO 40 JJ = J, J + JB - 1
|
||
|
A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
|
||
|
CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
|
||
|
$ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
|
||
|
$ A( J, JJ ), 1 )
|
||
|
A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Update the rectangular superdiagonal block
|
||
|
*
|
||
|
IF( J.GE.2 )
|
||
|
$ CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
|
||
|
$ -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
|
||
|
$ CONE, A( 1, J ), LDA )
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
* Set KB to the number of columns factorized
|
||
|
*
|
||
|
KB = N - K
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Factorize the leading columns of A using the lower triangle
|
||
|
* of A and working forwards, and compute the matrix W = L21*D
|
||
|
* for use in updating A22 (note that conjg(W) is actually stored)
|
||
|
*
|
||
|
* Initialize the unused last entry of the subdiagonal array E.
|
||
|
*
|
||
|
E( N ) = CZERO
|
||
|
*
|
||
|
* K is the main loop index, increasing from 1 in steps of 1 or 2
|
||
|
*
|
||
|
K = 1
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
* Exit from loop
|
||
|
*
|
||
|
IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
|
||
|
$ GO TO 90
|
||
|
*
|
||
|
KSTEP = 1
|
||
|
P = K
|
||
|
*
|
||
|
* Copy column K of A to column K of W and update column K of W
|
||
|
*
|
||
|
W( K, K ) = DBLE( A( K, K ) )
|
||
|
IF( K.LT.N )
|
||
|
$ CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
|
||
|
IF( K.GT.1 ) THEN
|
||
|
CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
|
||
|
$ LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
|
||
|
W( K, K ) = DBLE( W( K, K ) )
|
||
|
END IF
|
||
|
*
|
||
|
* Determine rows and columns to be interchanged and whether
|
||
|
* a 1-by-1 or 2-by-2 pivot block will be used
|
||
|
*
|
||
|
ABSAKK = ABS( DBLE( W( K, K ) ) )
|
||
|
*
|
||
|
* IMAX is the row-index of the largest off-diagonal element in
|
||
|
* column K, and COLMAX is its absolute value.
|
||
|
* Determine both COLMAX and IMAX.
|
||
|
*
|
||
|
IF( K.LT.N ) THEN
|
||
|
IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
|
||
|
COLMAX = CABS1( W( IMAX, K ) )
|
||
|
ELSE
|
||
|
COLMAX = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Column K is zero or underflow: set INFO and continue
|
||
|
*
|
||
|
IF( INFO.EQ.0 )
|
||
|
$ INFO = K
|
||
|
KP = K
|
||
|
A( K, K ) = DBLE( W( K, K ) )
|
||
|
IF( K.LT.N )
|
||
|
$ CALL ZCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
|
||
|
*
|
||
|
* Set E( K ) to zero
|
||
|
*
|
||
|
IF( K.LT.N )
|
||
|
$ E( K ) = CZERO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* ============================================================
|
||
|
*
|
||
|
* BEGIN pivot search
|
||
|
*
|
||
|
* Case(1)
|
||
|
* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
|
||
|
* (used to handle NaN and Inf)
|
||
|
*
|
||
|
IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
|
||
|
*
|
||
|
* no interchange, use 1-by-1 pivot block
|
||
|
*
|
||
|
KP = K
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
DONE = .FALSE.
|
||
|
*
|
||
|
* Loop until pivot found
|
||
|
*
|
||
|
72 CONTINUE
|
||
|
*
|
||
|
* BEGIN pivot search loop body
|
||
|
*
|
||
|
*
|
||
|
* Copy column IMAX to column k+1 of W and update it
|
||
|
*
|
||
|
CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
|
||
|
CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
|
||
|
W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
|
||
|
*
|
||
|
IF( IMAX.LT.N )
|
||
|
$ CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
|
||
|
$ W( IMAX+1, K+1 ), 1 )
|
||
|
*
|
||
|
IF( K.GT.1 ) THEN
|
||
|
CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
|
||
|
$ A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
|
||
|
$ CONE, W( K, K+1 ), 1 )
|
||
|
W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
|
||
|
END IF
|
||
|
*
|
||
|
* JMAX is the column-index of the largest off-diagonal
|
||
|
* element in row IMAX, and ROWMAX is its absolute value.
|
||
|
* Determine both ROWMAX and JMAX.
|
||
|
*
|
||
|
IF( IMAX.NE.K ) THEN
|
||
|
JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
|
||
|
ROWMAX = CABS1( W( JMAX, K+1 ) )
|
||
|
ELSE
|
||
|
ROWMAX = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
IF( IMAX.LT.N ) THEN
|
||
|
ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
|
||
|
DTEMP = CABS1( W( ITEMP, K+1 ) )
|
||
|
IF( DTEMP.GT.ROWMAX ) THEN
|
||
|
ROWMAX = DTEMP
|
||
|
JMAX = ITEMP
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Case(2)
|
||
|
* Equivalent to testing for
|
||
|
* ABS( DBLE( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
|
||
|
* (used to handle NaN and Inf)
|
||
|
*
|
||
|
IF( .NOT.( ABS( DBLE( W( IMAX,K+1 ) ) )
|
||
|
$ .LT.ALPHA*ROWMAX ) ) THEN
|
||
|
*
|
||
|
* interchange rows and columns K and IMAX,
|
||
|
* use 1-by-1 pivot block
|
||
|
*
|
||
|
KP = IMAX
|
||
|
*
|
||
|
* copy column K+1 of W to column K of W
|
||
|
*
|
||
|
CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
|
||
|
*
|
||
|
DONE = .TRUE.
|
||
|
*
|
||
|
* Case(3)
|
||
|
* Equivalent to testing for ROWMAX.EQ.COLMAX,
|
||
|
* (used to handle NaN and Inf)
|
||
|
*
|
||
|
ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
|
||
|
$ THEN
|
||
|
*
|
||
|
* interchange rows and columns K+1 and IMAX,
|
||
|
* use 2-by-2 pivot block
|
||
|
*
|
||
|
KP = IMAX
|
||
|
KSTEP = 2
|
||
|
DONE = .TRUE.
|
||
|
*
|
||
|
* Case(4)
|
||
|
ELSE
|
||
|
*
|
||
|
* Pivot not found: set params and repeat
|
||
|
*
|
||
|
P = IMAX
|
||
|
COLMAX = ROWMAX
|
||
|
IMAX = JMAX
|
||
|
*
|
||
|
* Copy updated JMAXth (next IMAXth) column to Kth of W
|
||
|
*
|
||
|
CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
*
|
||
|
* End pivot search loop body
|
||
|
*
|
||
|
IF( .NOT.DONE ) GOTO 72
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* END pivot search
|
||
|
*
|
||
|
* ============================================================
|
||
|
*
|
||
|
* KK is the column of A where pivoting step stopped
|
||
|
*
|
||
|
KK = K + KSTEP - 1
|
||
|
*
|
||
|
* Interchange rows and columns P and K (only for 2-by-2 pivot).
|
||
|
* Updated column P is already stored in column K of W.
|
||
|
*
|
||
|
IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
|
||
|
*
|
||
|
* Copy non-updated column KK-1 to column P of submatrix A
|
||
|
* at step K. No need to copy element into columns
|
||
|
* K and K+1 of A for 2-by-2 pivot, since these columns
|
||
|
* will be later overwritten.
|
||
|
*
|
||
|
A( P, P ) = DBLE( A( K, K ) )
|
||
|
CALL ZCOPY( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
|
||
|
CALL ZLACGV( P-K-1, A( P, K+1 ), LDA )
|
||
|
IF( P.LT.N )
|
||
|
$ CALL ZCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
|
||
|
*
|
||
|
* Interchange rows K and P in first K-1 columns of A
|
||
|
* (columns K and K+1 of A for 2-by-2 pivot will be
|
||
|
* later overwritten). Interchange rows K and P
|
||
|
* in first KK columns of W.
|
||
|
*
|
||
|
IF( K.GT.1 )
|
||
|
$ CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
|
||
|
CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
|
||
|
END IF
|
||
|
*
|
||
|
* Interchange rows and columns KP and KK.
|
||
|
* Updated column KP is already stored in column KK of W.
|
||
|
*
|
||
|
IF( KP.NE.KK ) THEN
|
||
|
*
|
||
|
* Copy non-updated column KK to column KP of submatrix A
|
||
|
* at step K. No need to copy element into column K
|
||
|
* (or K and K+1 for 2-by-2 pivot) of A, since these columns
|
||
|
* will be later overwritten.
|
||
|
*
|
||
|
A( KP, KP ) = DBLE( A( KK, KK ) )
|
||
|
CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
|
||
|
$ LDA )
|
||
|
CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
|
||
|
IF( KP.LT.N )
|
||
|
$ CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
|
||
|
*
|
||
|
* Interchange rows KK and KP in first K-1 columns of A
|
||
|
* (column K (or K and K+1 for 2-by-2 pivot) of A will be
|
||
|
* later overwritten). Interchange rows KK and KP
|
||
|
* in first KK columns of W.
|
||
|
*
|
||
|
IF( K.GT.1 )
|
||
|
$ CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
|
||
|
CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
|
||
|
END IF
|
||
|
*
|
||
|
IF( KSTEP.EQ.1 ) THEN
|
||
|
*
|
||
|
* 1-by-1 pivot block D(k): column k of W now holds
|
||
|
*
|
||
|
* W(k) = L(k)*D(k),
|
||
|
*
|
||
|
* where L(k) is the k-th column of L
|
||
|
*
|
||
|
* (1) Store subdiag. elements of column L(k)
|
||
|
* and 1-by-1 block D(k) in column k of A.
|
||
|
* (NOTE: Diagonal element L(k,k) is a UNIT element
|
||
|
* and not stored)
|
||
|
* A(k,k) := D(k,k) = W(k,k)
|
||
|
* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
|
||
|
*
|
||
|
* (NOTE: No need to use for Hermitian matrix
|
||
|
* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
|
||
|
* element D(k,k) from W (potentially saves only one load))
|
||
|
CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
|
||
|
IF( K.LT.N ) THEN
|
||
|
*
|
||
|
* (NOTE: No need to check if A(k,k) is NOT ZERO,
|
||
|
* since that was ensured earlier in pivot search:
|
||
|
* case A(k,k) = 0 falls into 2x2 pivot case(3))
|
||
|
*
|
||
|
* Handle division by a small number
|
||
|
*
|
||
|
T = DBLE( A( K, K ) )
|
||
|
IF( ABS( T ).GE.SFMIN ) THEN
|
||
|
R1 = ONE / T
|
||
|
CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
|
||
|
ELSE
|
||
|
DO 74 II = K + 1, N
|
||
|
A( II, K ) = A( II, K ) / T
|
||
|
74 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* (2) Conjugate column W(k)
|
||
|
*
|
||
|
CALL ZLACGV( N-K, W( K+1, K ), 1 )
|
||
|
*
|
||
|
* Store the subdiagonal element of D in array E
|
||
|
*
|
||
|
E( K ) = CZERO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
|
||
|
*
|
||
|
* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
|
||
|
*
|
||
|
* where L(k) and L(k+1) are the k-th and (k+1)-th columns
|
||
|
* of L
|
||
|
*
|
||
|
* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
|
||
|
* block D(k:k+1,k:k+1) in columns k and k+1 of A.
|
||
|
* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
|
||
|
* block and not stored.
|
||
|
* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
|
||
|
* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
|
||
|
* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
|
||
|
*
|
||
|
IF( K.LT.N-1 ) THEN
|
||
|
*
|
||
|
* Factor out the columns of the inverse of 2-by-2 pivot
|
||
|
* block D, so that each column contains 1, to reduce the
|
||
|
* number of FLOPS when we multiply panel
|
||
|
* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
|
||
|
*
|
||
|
* D**(-1) = ( d11 cj(d21) )**(-1) =
|
||
|
* ( d21 d22 )
|
||
|
*
|
||
|
* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
|
||
|
* ( (-d21) ( d11 ) )
|
||
|
*
|
||
|
* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
|
||
|
*
|
||
|
* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
|
||
|
* ( ( -1 ) ( d11/conj(d21) ) )
|
||
|
*
|
||
|
* = 1/(|d21|**2) * 1/(D22*D11-1) *
|
||
|
*
|
||
|
* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
||
|
* ( ( -1 ) ( D22 ) )
|
||
|
*
|
||
|
* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
||
|
* ( ( -1 ) ( D22 ) )
|
||
|
*
|
||
|
* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
|
||
|
* ( ( -1 ) ( D22 ) )
|
||
|
*
|
||
|
* Handle division by a small number. (NOTE: order of
|
||
|
* operations is important)
|
||
|
*
|
||
|
* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
|
||
|
* ( (( -1 ) ) (( D22 ) ) ),
|
||
|
*
|
||
|
* where D11 = d22/d21,
|
||
|
* D22 = d11/conj(d21),
|
||
|
* D21 = d21,
|
||
|
* T = 1/(D22*D11-1).
|
||
|
*
|
||
|
* (NOTE: No need to check for division by ZERO,
|
||
|
* since that was ensured earlier in pivot search:
|
||
|
* (a) d21 != 0 in 2x2 pivot case(4),
|
||
|
* since |d21| should be larger than |d11| and |d22|;
|
||
|
* (b) (D22*D11 - 1) != 0, since from (a),
|
||
|
* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
|
||
|
*
|
||
|
D21 = W( K+1, K )
|
||
|
D11 = W( K+1, K+1 ) / D21
|
||
|
D22 = W( K, K ) / DCONJG( D21 )
|
||
|
T = ONE / ( DBLE( D11*D22 )-ONE )
|
||
|
*
|
||
|
* Update elements in columns A(k) and A(k+1) as
|
||
|
* dot products of rows of ( W(k) W(k+1) ) and columns
|
||
|
* of D**(-1)
|
||
|
*
|
||
|
DO 80 J = K + 2, N
|
||
|
A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
|
||
|
$ DCONJG( D21 ) )
|
||
|
A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
|
||
|
$ D21 )
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Copy diagonal elements of D(K) to A,
|
||
|
* copy subdiagonal element of D(K) to E(K) and
|
||
|
* ZERO out subdiagonal entry of A
|
||
|
*
|
||
|
A( K, K ) = W( K, K )
|
||
|
A( K+1, K ) = CZERO
|
||
|
A( K+1, K+1 ) = W( K+1, K+1 )
|
||
|
E( K ) = W( K+1, K )
|
||
|
E( K+1 ) = CZERO
|
||
|
*
|
||
|
* (2) Conjugate columns W(k) and W(k+1)
|
||
|
*
|
||
|
CALL ZLACGV( N-K, W( K+1, K ), 1 )
|
||
|
CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* End column K is nonsingular
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Store details of the interchanges in IPIV
|
||
|
*
|
||
|
IF( KSTEP.EQ.1 ) THEN
|
||
|
IPIV( K ) = KP
|
||
|
ELSE
|
||
|
IPIV( K ) = -P
|
||
|
IPIV( K+1 ) = -KP
|
||
|
END IF
|
||
|
*
|
||
|
* Increase K and return to the start of the main loop
|
||
|
*
|
||
|
K = K + KSTEP
|
||
|
GO TO 70
|
||
|
*
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Update the lower triangle of A22 (= A(k:n,k:n)) as
|
||
|
*
|
||
|
* A22 := A22 - L21*D*L21**H = A22 - L21*W**H
|
||
|
*
|
||
|
* computing blocks of NB columns at a time (note that conjg(W) is
|
||
|
* actually stored)
|
||
|
*
|
||
|
DO 110 J = K, N, NB
|
||
|
JB = MIN( NB, N-J+1 )
|
||
|
*
|
||
|
* Update the lower triangle of the diagonal block
|
||
|
*
|
||
|
DO 100 JJ = J, J + JB - 1
|
||
|
A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
|
||
|
CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
|
||
|
$ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
|
||
|
$ A( JJ, JJ ), 1 )
|
||
|
A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
* Update the rectangular subdiagonal block
|
||
|
*
|
||
|
IF( J+JB.LE.N )
|
||
|
$ CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
|
||
|
$ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
|
||
|
$ LDW, CONE, A( J+JB, J ), LDA )
|
||
|
110 CONTINUE
|
||
|
*
|
||
|
* Set KB to the number of columns factorized
|
||
|
*
|
||
|
KB = K - 1
|
||
|
*
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLAHEF_RK
|
||
|
*
|
||
|
END
|