You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
368 lines
11 KiB
368 lines
11 KiB
2 years ago
|
*> \brief \b ZLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZLAQPS + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqps.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqps.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqps.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
|
||
|
* VN2, AUXV, F, LDF )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER KB, LDA, LDF, M, N, NB, OFFSET
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER JPVT( * )
|
||
|
* DOUBLE PRECISION VN1( * ), VN2( * )
|
||
|
* COMPLEX*16 A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZLAQPS computes a step of QR factorization with column pivoting
|
||
|
*> of a complex M-by-N matrix A by using Blas-3. It tries to factorize
|
||
|
*> NB columns from A starting from the row OFFSET+1, and updates all
|
||
|
*> of the matrix with Blas-3 xGEMM.
|
||
|
*>
|
||
|
*> In some cases, due to catastrophic cancellations, it cannot
|
||
|
*> factorize NB columns. Hence, the actual number of factorized
|
||
|
*> columns is returned in KB.
|
||
|
*>
|
||
|
*> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] OFFSET
|
||
|
*> \verbatim
|
||
|
*> OFFSET is INTEGER
|
||
|
*> The number of rows of A that have been factorized in
|
||
|
*> previous steps.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB
|
||
|
*> \verbatim
|
||
|
*> NB is INTEGER
|
||
|
*> The number of columns to factorize.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] KB
|
||
|
*> \verbatim
|
||
|
*> KB is INTEGER
|
||
|
*> The number of columns actually factorized.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit, block A(OFFSET+1:M,1:KB) is the triangular
|
||
|
*> factor obtained and block A(1:OFFSET,1:N) has been
|
||
|
*> accordingly pivoted, but no factorized.
|
||
|
*> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
|
||
|
*> been updated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] JPVT
|
||
|
*> \verbatim
|
||
|
*> JPVT is INTEGER array, dimension (N)
|
||
|
*> JPVT(I) = K <==> Column K of the full matrix A has been
|
||
|
*> permuted into position I in AP.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is COMPLEX*16 array, dimension (KB)
|
||
|
*> The scalar factors of the elementary reflectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VN1
|
||
|
*> \verbatim
|
||
|
*> VN1 is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The vector with the partial column norms.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VN2
|
||
|
*> \verbatim
|
||
|
*> VN2 is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The vector with the exact column norms.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] AUXV
|
||
|
*> \verbatim
|
||
|
*> AUXV is COMPLEX*16 array, dimension (NB)
|
||
|
*> Auxiliary vector.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] F
|
||
|
*> \verbatim
|
||
|
*> F is COMPLEX*16 array, dimension (LDF,NB)
|
||
|
*> Matrix F**H = L * Y**H * A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDF
|
||
|
*> \verbatim
|
||
|
*> LDF is INTEGER
|
||
|
*> The leading dimension of the array F. LDF >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16OTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
|
||
|
*> X. Sun, Computer Science Dept., Duke University, USA
|
||
|
*> \n
|
||
|
*> Partial column norm updating strategy modified on April 2011
|
||
|
*> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
|
||
|
*> University of Zagreb, Croatia.
|
||
|
*
|
||
|
*> \par References:
|
||
|
* ================
|
||
|
*>
|
||
|
*> LAPACK Working Note 176
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
|
||
|
$ VN2, AUXV, F, LDF )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER KB, LDA, LDF, M, N, NB, OFFSET
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER JPVT( * )
|
||
|
DOUBLE PRECISION VN1( * ), VN2( * )
|
||
|
COMPLEX*16 A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
COMPLEX*16 CZERO, CONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
|
||
|
$ CZERO = ( 0.0D+0, 0.0D+0 ),
|
||
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER ITEMP, J, K, LASTRK, LSTICC, PVT, RK
|
||
|
DOUBLE PRECISION TEMP, TEMP2, TOL3Z
|
||
|
COMPLEX*16 AKK
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZGEMM, ZGEMV, ZLARFG, ZSWAP
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DCONJG, MAX, MIN, NINT, SQRT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER IDAMAX
|
||
|
DOUBLE PRECISION DLAMCH, DZNRM2
|
||
|
EXTERNAL IDAMAX, DLAMCH, DZNRM2
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
LASTRK = MIN( M, N+OFFSET )
|
||
|
LSTICC = 0
|
||
|
K = 0
|
||
|
TOL3Z = SQRT(DLAMCH('Epsilon'))
|
||
|
*
|
||
|
* Beginning of while loop.
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
|
||
|
K = K + 1
|
||
|
RK = OFFSET + K
|
||
|
*
|
||
|
* Determine ith pivot column and swap if necessary
|
||
|
*
|
||
|
PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
|
||
|
IF( PVT.NE.K ) THEN
|
||
|
CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
|
||
|
CALL ZSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
|
||
|
ITEMP = JPVT( PVT )
|
||
|
JPVT( PVT ) = JPVT( K )
|
||
|
JPVT( K ) = ITEMP
|
||
|
VN1( PVT ) = VN1( K )
|
||
|
VN2( PVT ) = VN2( K )
|
||
|
END IF
|
||
|
*
|
||
|
* Apply previous Householder reflectors to column K:
|
||
|
* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**H.
|
||
|
*
|
||
|
IF( K.GT.1 ) THEN
|
||
|
DO 20 J = 1, K - 1
|
||
|
F( K, J ) = DCONJG( F( K, J ) )
|
||
|
20 CONTINUE
|
||
|
CALL ZGEMV( 'No transpose', M-RK+1, K-1, -CONE, A( RK, 1 ),
|
||
|
$ LDA, F( K, 1 ), LDF, CONE, A( RK, K ), 1 )
|
||
|
DO 30 J = 1, K - 1
|
||
|
F( K, J ) = DCONJG( F( K, J ) )
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Generate elementary reflector H(k).
|
||
|
*
|
||
|
IF( RK.LT.M ) THEN
|
||
|
CALL ZLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
|
||
|
ELSE
|
||
|
CALL ZLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
|
||
|
END IF
|
||
|
*
|
||
|
AKK = A( RK, K )
|
||
|
A( RK, K ) = CONE
|
||
|
*
|
||
|
* Compute Kth column of F:
|
||
|
*
|
||
|
* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**H*A(RK:M,K).
|
||
|
*
|
||
|
IF( K.LT.N ) THEN
|
||
|
CALL ZGEMV( 'Conjugate transpose', M-RK+1, N-K, TAU( K ),
|
||
|
$ A( RK, K+1 ), LDA, A( RK, K ), 1, CZERO,
|
||
|
$ F( K+1, K ), 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* Padding F(1:K,K) with zeros.
|
||
|
*
|
||
|
DO 40 J = 1, K
|
||
|
F( J, K ) = CZERO
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Incremental updating of F:
|
||
|
* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**H
|
||
|
* *A(RK:M,K).
|
||
|
*
|
||
|
IF( K.GT.1 ) THEN
|
||
|
CALL ZGEMV( 'Conjugate transpose', M-RK+1, K-1, -TAU( K ),
|
||
|
$ A( RK, 1 ), LDA, A( RK, K ), 1, CZERO,
|
||
|
$ AUXV( 1 ), 1 )
|
||
|
*
|
||
|
CALL ZGEMV( 'No transpose', N, K-1, CONE, F( 1, 1 ), LDF,
|
||
|
$ AUXV( 1 ), 1, CONE, F( 1, K ), 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* Update the current row of A:
|
||
|
* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**H.
|
||
|
*
|
||
|
IF( K.LT.N ) THEN
|
||
|
CALL ZGEMM( 'No transpose', 'Conjugate transpose', 1, N-K,
|
||
|
$ K, -CONE, A( RK, 1 ), LDA, F( K+1, 1 ), LDF,
|
||
|
$ CONE, A( RK, K+1 ), LDA )
|
||
|
END IF
|
||
|
*
|
||
|
* Update partial column norms.
|
||
|
*
|
||
|
IF( RK.LT.LASTRK ) THEN
|
||
|
DO 50 J = K + 1, N
|
||
|
IF( VN1( J ).NE.ZERO ) THEN
|
||
|
*
|
||
|
* NOTE: The following 4 lines follow from the analysis in
|
||
|
* Lapack Working Note 176.
|
||
|
*
|
||
|
TEMP = ABS( A( RK, J ) ) / VN1( J )
|
||
|
TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
|
||
|
TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
|
||
|
IF( TEMP2 .LE. TOL3Z ) THEN
|
||
|
VN2( J ) = DBLE( LSTICC )
|
||
|
LSTICC = J
|
||
|
ELSE
|
||
|
VN1( J ) = VN1( J )*SQRT( TEMP )
|
||
|
END IF
|
||
|
END IF
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
A( RK, K ) = AKK
|
||
|
*
|
||
|
* End of while loop.
|
||
|
*
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
KB = K
|
||
|
RK = OFFSET + KB
|
||
|
*
|
||
|
* Apply the block reflector to the rest of the matrix:
|
||
|
* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
|
||
|
* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**H.
|
||
|
*
|
||
|
IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
|
||
|
CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-RK, N-KB,
|
||
|
$ KB, -CONE, A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF,
|
||
|
$ CONE, A( RK+1, KB+1 ), LDA )
|
||
|
END IF
|
||
|
*
|
||
|
* Recomputation of difficult columns.
|
||
|
*
|
||
|
60 CONTINUE
|
||
|
IF( LSTICC.GT.0 ) THEN
|
||
|
ITEMP = NINT( VN2( LSTICC ) )
|
||
|
VN1( LSTICC ) = DZNRM2( M-RK, A( RK+1, LSTICC ), 1 )
|
||
|
*
|
||
|
* NOTE: The computation of VN1( LSTICC ) relies on the fact that
|
||
|
* SNRM2 does not fail on vectors with norm below the value of
|
||
|
* SQRT(DLAMCH('S'))
|
||
|
*
|
||
|
VN2( LSTICC ) = VN1( LSTICC )
|
||
|
LSTICC = ITEMP
|
||
|
GO TO 60
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLAQPS
|
||
|
*
|
||
|
END
|