You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
564 lines
17 KiB
564 lines
17 KiB
2 years ago
|
*> \brief \b ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZLAQR2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
|
||
|
* IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
|
||
|
* NV, WV, LDWV, WORK, LWORK )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
|
||
|
* $ LDZ, LWORK, N, ND, NH, NS, NV, NW
|
||
|
* LOGICAL WANTT, WANTZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
|
||
|
* $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZLAQR2 is identical to ZLAQR3 except that it avoids
|
||
|
*> recursion by calling ZLAHQR instead of ZLAQR4.
|
||
|
*>
|
||
|
*> Aggressive early deflation:
|
||
|
*>
|
||
|
*> ZLAQR2 accepts as input an upper Hessenberg matrix
|
||
|
*> H and performs an unitary similarity transformation
|
||
|
*> designed to detect and deflate fully converged eigenvalues from
|
||
|
*> a trailing principal submatrix. On output H has been over-
|
||
|
*> written by a new Hessenberg matrix that is a perturbation of
|
||
|
*> an unitary similarity transformation of H. It is to be
|
||
|
*> hoped that the final version of H has many zero subdiagonal
|
||
|
*> entries.
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] WANTT
|
||
|
*> \verbatim
|
||
|
*> WANTT is LOGICAL
|
||
|
*> If .TRUE., then the Hessenberg matrix H is fully updated
|
||
|
*> so that the triangular Schur factor may be
|
||
|
*> computed (in cooperation with the calling subroutine).
|
||
|
*> If .FALSE., then only enough of H is updated to preserve
|
||
|
*> the eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] WANTZ
|
||
|
*> \verbatim
|
||
|
*> WANTZ is LOGICAL
|
||
|
*> If .TRUE., then the unitary matrix Z is updated so
|
||
|
*> so that the unitary Schur factor may be computed
|
||
|
*> (in cooperation with the calling subroutine).
|
||
|
*> If .FALSE., then Z is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix H and (if WANTZ is .TRUE.) the
|
||
|
*> order of the unitary matrix Z.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KTOP
|
||
|
*> \verbatim
|
||
|
*> KTOP is INTEGER
|
||
|
*> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
|
||
|
*> KBOT and KTOP together determine an isolated block
|
||
|
*> along the diagonal of the Hessenberg matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KBOT
|
||
|
*> \verbatim
|
||
|
*> KBOT is INTEGER
|
||
|
*> It is assumed without a check that either
|
||
|
*> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
|
||
|
*> determine an isolated block along the diagonal of the
|
||
|
*> Hessenberg matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NW
|
||
|
*> \verbatim
|
||
|
*> NW is INTEGER
|
||
|
*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] H
|
||
|
*> \verbatim
|
||
|
*> H is COMPLEX*16 array, dimension (LDH,N)
|
||
|
*> On input the initial N-by-N section of H stores the
|
||
|
*> Hessenberg matrix undergoing aggressive early deflation.
|
||
|
*> On output H has been transformed by a unitary
|
||
|
*> similarity transformation, perturbed, and the returned
|
||
|
*> to Hessenberg form that (it is to be hoped) has some
|
||
|
*> zero subdiagonal entries.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDH
|
||
|
*> \verbatim
|
||
|
*> LDH is INTEGER
|
||
|
*> Leading dimension of H just as declared in the calling
|
||
|
*> subroutine. N <= LDH
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ILOZ
|
||
|
*> \verbatim
|
||
|
*> ILOZ is INTEGER
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IHIZ
|
||
|
*> \verbatim
|
||
|
*> IHIZ is INTEGER
|
||
|
*> Specify the rows of Z to which transformations must be
|
||
|
*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is COMPLEX*16 array, dimension (LDZ,N)
|
||
|
*> IF WANTZ is .TRUE., then on output, the unitary
|
||
|
*> similarity transformation mentioned above has been
|
||
|
*> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
|
||
|
*> If WANTZ is .FALSE., then Z is unreferenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of Z just as declared in the
|
||
|
*> calling subroutine. 1 <= LDZ.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] NS
|
||
|
*> \verbatim
|
||
|
*> NS is INTEGER
|
||
|
*> The number of unconverged (ie approximate) eigenvalues
|
||
|
*> returned in SR and SI that may be used as shifts by the
|
||
|
*> calling subroutine.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ND
|
||
|
*> \verbatim
|
||
|
*> ND is INTEGER
|
||
|
*> The number of converged eigenvalues uncovered by this
|
||
|
*> subroutine.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SH
|
||
|
*> \verbatim
|
||
|
*> SH is COMPLEX*16 array, dimension (KBOT)
|
||
|
*> On output, approximate eigenvalues that may
|
||
|
*> be used for shifts are stored in SH(KBOT-ND-NS+1)
|
||
|
*> through SR(KBOT-ND). Converged eigenvalues are
|
||
|
*> stored in SH(KBOT-ND+1) through SH(KBOT).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] V
|
||
|
*> \verbatim
|
||
|
*> V is COMPLEX*16 array, dimension (LDV,NW)
|
||
|
*> An NW-by-NW work array.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV
|
||
|
*> \verbatim
|
||
|
*> LDV is INTEGER
|
||
|
*> The leading dimension of V just as declared in the
|
||
|
*> calling subroutine. NW <= LDV
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NH
|
||
|
*> \verbatim
|
||
|
*> NH is INTEGER
|
||
|
*> The number of columns of T. NH >= NW.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] T
|
||
|
*> \verbatim
|
||
|
*> T is COMPLEX*16 array, dimension (LDT,NW)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of T just as declared in the
|
||
|
*> calling subroutine. NW <= LDT
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NV
|
||
|
*> \verbatim
|
||
|
*> NV is INTEGER
|
||
|
*> The number of rows of work array WV available for
|
||
|
*> workspace. NV >= NW.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WV
|
||
|
*> \verbatim
|
||
|
*> WV is COMPLEX*16 array, dimension (LDWV,NW)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDWV
|
||
|
*> \verbatim
|
||
|
*> LDWV is INTEGER
|
||
|
*> The leading dimension of W just as declared in the
|
||
|
*> calling subroutine. NW <= LDV
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
||
|
*> On exit, WORK(1) is set to an estimate of the optimal value
|
||
|
*> of LWORK for the given values of N, NW, KTOP and KBOT.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the work array WORK. LWORK = 2*NW
|
||
|
*> suffices, but greater efficiency may result from larger
|
||
|
*> values of LWORK.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; ZLAQR2
|
||
|
*> only estimates the optimal workspace size for the given
|
||
|
*> values of N, NW, KTOP and KBOT. The estimate is returned
|
||
|
*> in WORK(1). No error message related to LWORK is issued
|
||
|
*> by XERBLA. Neither H nor Z are accessed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16OTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Karen Braman and Ralph Byers, Department of Mathematics,
|
||
|
*> University of Kansas, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
|
||
|
$ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
|
||
|
$ NV, WV, LDWV, WORK, LWORK )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
|
||
|
$ LDZ, LWORK, N, ND, NH, NS, NV, NW
|
||
|
LOGICAL WANTT, WANTZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
|
||
|
$ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* ================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX*16 ZERO, ONE
|
||
|
PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
|
||
|
$ ONE = ( 1.0d0, 0.0d0 ) )
|
||
|
DOUBLE PRECISION RZERO, RONE
|
||
|
PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
COMPLEX*16 BETA, CDUM, S, TAU
|
||
|
DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP
|
||
|
INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
|
||
|
$ KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWKOPT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
|
||
|
$ ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
DOUBLE PRECISION CABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* ==== Estimate optimal workspace. ====
|
||
|
*
|
||
|
JW = MIN( NW, KBOT-KTOP+1 )
|
||
|
IF( JW.LE.2 ) THEN
|
||
|
LWKOPT = 1
|
||
|
ELSE
|
||
|
*
|
||
|
* ==== Workspace query call to ZGEHRD ====
|
||
|
*
|
||
|
CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
|
||
|
LWK1 = INT( WORK( 1 ) )
|
||
|
*
|
||
|
* ==== Workspace query call to ZUNMHR ====
|
||
|
*
|
||
|
CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
|
||
|
$ WORK, -1, INFO )
|
||
|
LWK2 = INT( WORK( 1 ) )
|
||
|
*
|
||
|
* ==== Optimal workspace ====
|
||
|
*
|
||
|
LWKOPT = JW + MAX( LWK1, LWK2 )
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Quick return in case of workspace query. ====
|
||
|
*
|
||
|
IF( LWORK.EQ.-1 ) THEN
|
||
|
WORK( 1 ) = DCMPLX( LWKOPT, 0 )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Nothing to do ...
|
||
|
* ... for an empty active block ... ====
|
||
|
NS = 0
|
||
|
ND = 0
|
||
|
WORK( 1 ) = ONE
|
||
|
IF( KTOP.GT.KBOT )
|
||
|
$ RETURN
|
||
|
* ... nor for an empty deflation window. ====
|
||
|
IF( NW.LT.1 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* ==== Machine constants ====
|
||
|
*
|
||
|
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
|
||
|
SAFMAX = RONE / SAFMIN
|
||
|
ULP = DLAMCH( 'PRECISION' )
|
||
|
SMLNUM = SAFMIN*( DBLE( N ) / ULP )
|
||
|
*
|
||
|
* ==== Setup deflation window ====
|
||
|
*
|
||
|
JW = MIN( NW, KBOT-KTOP+1 )
|
||
|
KWTOP = KBOT - JW + 1
|
||
|
IF( KWTOP.EQ.KTOP ) THEN
|
||
|
S = ZERO
|
||
|
ELSE
|
||
|
S = H( KWTOP, KWTOP-1 )
|
||
|
END IF
|
||
|
*
|
||
|
IF( KBOT.EQ.KWTOP ) THEN
|
||
|
*
|
||
|
* ==== 1-by-1 deflation window: not much to do ====
|
||
|
*
|
||
|
SH( KWTOP ) = H( KWTOP, KWTOP )
|
||
|
NS = 1
|
||
|
ND = 0
|
||
|
IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
|
||
|
$ KWTOP ) ) ) ) THEN
|
||
|
NS = 0
|
||
|
ND = 1
|
||
|
IF( KWTOP.GT.KTOP )
|
||
|
$ H( KWTOP, KWTOP-1 ) = ZERO
|
||
|
END IF
|
||
|
WORK( 1 ) = ONE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Convert to spike-triangular form. (In case of a
|
||
|
* . rare QR failure, this routine continues to do
|
||
|
* . aggressive early deflation using that part of
|
||
|
* . the deflation window that converged using INFQR
|
||
|
* . here and there to keep track.) ====
|
||
|
*
|
||
|
CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
|
||
|
CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
|
||
|
*
|
||
|
CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
|
||
|
CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
|
||
|
$ JW, V, LDV, INFQR )
|
||
|
*
|
||
|
* ==== Deflation detection loop ====
|
||
|
*
|
||
|
NS = JW
|
||
|
ILST = INFQR + 1
|
||
|
DO 10 KNT = INFQR + 1, JW
|
||
|
*
|
||
|
* ==== Small spike tip deflation test ====
|
||
|
*
|
||
|
FOO = CABS1( T( NS, NS ) )
|
||
|
IF( FOO.EQ.RZERO )
|
||
|
$ FOO = CABS1( S )
|
||
|
IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
|
||
|
$ THEN
|
||
|
*
|
||
|
* ==== One more converged eigenvalue ====
|
||
|
*
|
||
|
NS = NS - 1
|
||
|
ELSE
|
||
|
*
|
||
|
* ==== One undeflatable eigenvalue. Move it up out of the
|
||
|
* . way. (ZTREXC can not fail in this case.) ====
|
||
|
*
|
||
|
IFST = NS
|
||
|
CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
|
||
|
ILST = ILST + 1
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* ==== Return to Hessenberg form ====
|
||
|
*
|
||
|
IF( NS.EQ.0 )
|
||
|
$ S = ZERO
|
||
|
*
|
||
|
IF( NS.LT.JW ) THEN
|
||
|
*
|
||
|
* ==== sorting the diagonal of T improves accuracy for
|
||
|
* . graded matrices. ====
|
||
|
*
|
||
|
DO 30 I = INFQR + 1, NS
|
||
|
IFST = I
|
||
|
DO 20 J = I + 1, NS
|
||
|
IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
|
||
|
$ IFST = J
|
||
|
20 CONTINUE
|
||
|
ILST = I
|
||
|
IF( IFST.NE.ILST )
|
||
|
$ CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Restore shift/eigenvalue array from T ====
|
||
|
*
|
||
|
DO 40 I = INFQR + 1, JW
|
||
|
SH( KWTOP+I-1 ) = T( I, I )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
*
|
||
|
IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
|
||
|
IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
|
||
|
*
|
||
|
* ==== Reflect spike back into lower triangle ====
|
||
|
*
|
||
|
CALL ZCOPY( NS, V, LDV, WORK, 1 )
|
||
|
DO 50 I = 1, NS
|
||
|
WORK( I ) = DCONJG( WORK( I ) )
|
||
|
50 CONTINUE
|
||
|
BETA = WORK( 1 )
|
||
|
CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
|
||
|
WORK( 1 ) = ONE
|
||
|
*
|
||
|
CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
|
||
|
*
|
||
|
CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
|
||
|
$ WORK( JW+1 ) )
|
||
|
CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
|
||
|
$ WORK( JW+1 ) )
|
||
|
CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
|
||
|
$ WORK( JW+1 ) )
|
||
|
*
|
||
|
CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
|
||
|
$ LWORK-JW, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Copy updated reduced window into place ====
|
||
|
*
|
||
|
IF( KWTOP.GT.1 )
|
||
|
$ H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
|
||
|
CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
|
||
|
CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
|
||
|
$ LDH+1 )
|
||
|
*
|
||
|
* ==== Accumulate orthogonal matrix in order update
|
||
|
* . H and Z, if requested. ====
|
||
|
*
|
||
|
IF( NS.GT.1 .AND. S.NE.ZERO )
|
||
|
$ CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
|
||
|
$ WORK( JW+1 ), LWORK-JW, INFO )
|
||
|
*
|
||
|
* ==== Update vertical slab in H ====
|
||
|
*
|
||
|
IF( WANTT ) THEN
|
||
|
LTOP = 1
|
||
|
ELSE
|
||
|
LTOP = KTOP
|
||
|
END IF
|
||
|
DO 60 KROW = LTOP, KWTOP - 1, NV
|
||
|
KLN = MIN( NV, KWTOP-KROW )
|
||
|
CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
|
||
|
$ LDH, V, LDV, ZERO, WV, LDWV )
|
||
|
CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* ==== Update horizontal slab in H ====
|
||
|
*
|
||
|
IF( WANTT ) THEN
|
||
|
DO 70 KCOL = KBOT + 1, N, NH
|
||
|
KLN = MIN( NH, N-KCOL+1 )
|
||
|
CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
|
||
|
$ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
|
||
|
CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
|
||
|
$ LDH )
|
||
|
70 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Update vertical slab in Z ====
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
DO 80 KROW = ILOZ, IHIZ, NV
|
||
|
KLN = MIN( NV, IHIZ-KROW+1 )
|
||
|
CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
|
||
|
$ LDZ, V, LDV, ZERO, WV, LDWV )
|
||
|
CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
|
||
|
$ LDZ )
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Return the number of deflations ... ====
|
||
|
*
|
||
|
ND = JW - NS
|
||
|
*
|
||
|
* ==== ... and the number of shifts. (Subtracting
|
||
|
* . INFQR from the spike length takes care
|
||
|
* . of the case of a rare QR failure while
|
||
|
* . calculating eigenvalues of the deflation
|
||
|
* . window.) ====
|
||
|
*
|
||
|
NS = NS - INFQR
|
||
|
*
|
||
|
* ==== Return optimal workspace. ====
|
||
|
*
|
||
|
WORK( 1 ) = DCMPLX( LWKOPT, 0 )
|
||
|
*
|
||
|
* ==== End of ZLAQR2 ====
|
||
|
*
|
||
|
END
|