You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
10 KiB
321 lines
10 KiB
2 years ago
|
*> \brief \b ZLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZLATDF + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatdf.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatdf.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatdf.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
|
||
|
* JPIV )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER IJOB, LDZ, N
|
||
|
* DOUBLE PRECISION RDSCAL, RDSUM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * ), JPIV( * )
|
||
|
* COMPLEX*16 RHS( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZLATDF computes the contribution to the reciprocal Dif-estimate
|
||
|
*> by solving for x in Z * x = b, where b is chosen such that the norm
|
||
|
*> of x is as large as possible. It is assumed that LU decomposition
|
||
|
*> of Z has been computed by ZGETC2. On entry RHS = f holds the
|
||
|
*> contribution from earlier solved sub-systems, and on return RHS = x.
|
||
|
*>
|
||
|
*> The factorization of Z returned by ZGETC2 has the form
|
||
|
*> Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
|
||
|
*> triangular with unit diagonal elements and U is upper triangular.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] IJOB
|
||
|
*> \verbatim
|
||
|
*> IJOB is INTEGER
|
||
|
*> IJOB = 2: First compute an approximative null-vector e
|
||
|
*> of Z using ZGECON, e is normalized and solve for
|
||
|
*> Zx = +-e - f with the sign giving the greater value of
|
||
|
*> 2-norm(x). About 5 times as expensive as Default.
|
||
|
*> IJOB .ne. 2: Local look ahead strategy where
|
||
|
*> all entries of the r.h.s. b is chosen as either +1 or
|
||
|
*> -1. Default.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix Z.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Z
|
||
|
*> \verbatim
|
||
|
*> Z is COMPLEX*16 array, dimension (LDZ, N)
|
||
|
*> On entry, the LU part of the factorization of the n-by-n
|
||
|
*> matrix Z computed by ZGETC2: Z = P * L * U * Q
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDA >= max(1, N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RHS
|
||
|
*> \verbatim
|
||
|
*> RHS is COMPLEX*16 array, dimension (N).
|
||
|
*> On entry, RHS contains contributions from other subsystems.
|
||
|
*> On exit, RHS contains the solution of the subsystem with
|
||
|
*> entries according to the value of IJOB (see above).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RDSUM
|
||
|
*> \verbatim
|
||
|
*> RDSUM is DOUBLE PRECISION
|
||
|
*> On entry, the sum of squares of computed contributions to
|
||
|
*> the Dif-estimate under computation by ZTGSYL, where the
|
||
|
*> scaling factor RDSCAL (see below) has been factored out.
|
||
|
*> On exit, the corresponding sum of squares updated with the
|
||
|
*> contributions from the current sub-system.
|
||
|
*> If TRANS = 'T' RDSUM is not touched.
|
||
|
*> NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RDSCAL
|
||
|
*> \verbatim
|
||
|
*> RDSCAL is DOUBLE PRECISION
|
||
|
*> On entry, scaling factor used to prevent overflow in RDSUM.
|
||
|
*> On exit, RDSCAL is updated w.r.t. the current contributions
|
||
|
*> in RDSUM.
|
||
|
*> If TRANS = 'T', RDSCAL is not touched.
|
||
|
*> NOTE: RDSCAL only makes sense when ZTGSY2 is called by
|
||
|
*> ZTGSYL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N).
|
||
|
*> The pivot indices; for 1 <= i <= N, row i of the
|
||
|
*> matrix has been interchanged with row IPIV(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JPIV
|
||
|
*> \verbatim
|
||
|
*> JPIV is INTEGER array, dimension (N).
|
||
|
*> The pivot indices; for 1 <= j <= N, column j of the
|
||
|
*> matrix has been interchanged with column JPIV(j).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16OTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> This routine is a further developed implementation of algorithm
|
||
|
*> BSOLVE in [1] using complete pivoting in the LU factorization.
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
||
|
*> Umea University, S-901 87 Umea, Sweden.
|
||
|
*
|
||
|
*> \par References:
|
||
|
* ================
|
||
|
*>
|
||
|
*> [1] Bo Kagstrom and Lars Westin,
|
||
|
*> Generalized Schur Methods with Condition Estimators for
|
||
|
*> Solving the Generalized Sylvester Equation, IEEE Transactions
|
||
|
*> on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
|
||
|
*>\n
|
||
|
*> [2] Peter Poromaa,
|
||
|
*> On Efficient and Robust Estimators for the Separation
|
||
|
*> between two Regular Matrix Pairs with Applications in
|
||
|
*> Condition Estimation. Report UMINF-95.05, Department of
|
||
|
*> Computing Science, Umea University, S-901 87 Umea, Sweden,
|
||
|
*> 1995.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
|
||
|
$ JPIV )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER IJOB, LDZ, N
|
||
|
DOUBLE PRECISION RDSCAL, RDSUM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * ), JPIV( * )
|
||
|
COMPLEX*16 RHS( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER MAXDIM
|
||
|
PARAMETER ( MAXDIM = 2 )
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
COMPLEX*16 CONE
|
||
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, INFO, J, K
|
||
|
DOUBLE PRECISION RTEMP, SCALE, SMINU, SPLUS
|
||
|
COMPLEX*16 BM, BP, PMONE, TEMP
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
DOUBLE PRECISION RWORK( MAXDIM )
|
||
|
COMPLEX*16 WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZAXPY, ZCOPY, ZGECON, ZGESC2, ZLASSQ, ZLASWP,
|
||
|
$ ZSCAL
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DZASUM
|
||
|
COMPLEX*16 ZDOTC
|
||
|
EXTERNAL DZASUM, ZDOTC
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( IJOB.NE.2 ) THEN
|
||
|
*
|
||
|
* Apply permutations IPIV to RHS
|
||
|
*
|
||
|
CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
|
||
|
*
|
||
|
* Solve for L-part choosing RHS either to +1 or -1.
|
||
|
*
|
||
|
PMONE = -CONE
|
||
|
DO 10 J = 1, N - 1
|
||
|
BP = RHS( J ) + CONE
|
||
|
BM = RHS( J ) - CONE
|
||
|
SPLUS = ONE
|
||
|
*
|
||
|
* Look-ahead for L- part RHS(1:N-1) = +-1
|
||
|
* SPLUS and SMIN computed more efficiently than in BSOLVE[1].
|
||
|
*
|
||
|
SPLUS = SPLUS + DBLE( ZDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
|
||
|
$ J ), 1 ) )
|
||
|
SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
|
||
|
SPLUS = SPLUS*DBLE( RHS( J ) )
|
||
|
IF( SPLUS.GT.SMINU ) THEN
|
||
|
RHS( J ) = BP
|
||
|
ELSE IF( SMINU.GT.SPLUS ) THEN
|
||
|
RHS( J ) = BM
|
||
|
ELSE
|
||
|
*
|
||
|
* In this case the updating sums are equal and we can
|
||
|
* choose RHS(J) +1 or -1. The first time this happens we
|
||
|
* choose -1, thereafter +1. This is a simple way to get
|
||
|
* good estimates of matrices like Byers well-known example
|
||
|
* (see [1]). (Not done in BSOLVE.)
|
||
|
*
|
||
|
RHS( J ) = RHS( J ) + PMONE
|
||
|
PMONE = CONE
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the remaining r.h.s.
|
||
|
*
|
||
|
TEMP = -RHS( J )
|
||
|
CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Solve for U- part, lockahead for RHS(N) = +-1. This is not done
|
||
|
* In BSOLVE and will hopefully give us a better estimate because
|
||
|
* any ill-conditioning of the original matrix is transferred to U
|
||
|
* and not to L. U(N, N) is an approximation to sigma_min(LU).
|
||
|
*
|
||
|
CALL ZCOPY( N-1, RHS, 1, WORK, 1 )
|
||
|
WORK( N ) = RHS( N ) + CONE
|
||
|
RHS( N ) = RHS( N ) - CONE
|
||
|
SPLUS = ZERO
|
||
|
SMINU = ZERO
|
||
|
DO 30 I = N, 1, -1
|
||
|
TEMP = CONE / Z( I, I )
|
||
|
WORK( I ) = WORK( I )*TEMP
|
||
|
RHS( I ) = RHS( I )*TEMP
|
||
|
DO 20 K = I + 1, N
|
||
|
WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
|
||
|
RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
|
||
|
20 CONTINUE
|
||
|
SPLUS = SPLUS + ABS( WORK( I ) )
|
||
|
SMINU = SMINU + ABS( RHS( I ) )
|
||
|
30 CONTINUE
|
||
|
IF( SPLUS.GT.SMINU )
|
||
|
$ CALL ZCOPY( N, WORK, 1, RHS, 1 )
|
||
|
*
|
||
|
* Apply the permutations JPIV to the computed solution (RHS)
|
||
|
*
|
||
|
CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
|
||
|
*
|
||
|
* Compute the sum of squares
|
||
|
*
|
||
|
CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* ENTRY IJOB = 2
|
||
|
*
|
||
|
* Compute approximate nullvector XM of Z
|
||
|
*
|
||
|
CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
|
||
|
CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 )
|
||
|
*
|
||
|
* Compute RHS
|
||
|
*
|
||
|
CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
|
||
|
TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) )
|
||
|
CALL ZSCAL( N, TEMP, XM, 1 )
|
||
|
CALL ZCOPY( N, XM, 1, XP, 1 )
|
||
|
CALL ZAXPY( N, CONE, RHS, 1, XP, 1 )
|
||
|
CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 )
|
||
|
CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
|
||
|
CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
|
||
|
IF( DZASUM( N, XP, 1 ).GT.DZASUM( N, RHS, 1 ) )
|
||
|
$ CALL ZCOPY( N, XP, 1, RHS, 1 )
|
||
|
*
|
||
|
* Compute the sum of squares
|
||
|
*
|
||
|
CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLATDF
|
||
|
*
|
||
|
END
|