You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
341 lines
11 KiB
341 lines
11 KiB
2 years ago
|
*> \brief <b> ZPTSVX computes the solution to system of linear equations A * X = B for PT matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZPTSVX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptsvx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptsvx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptsvx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
|
||
|
* RCOND, FERR, BERR, WORK, RWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER FACT
|
||
|
* INTEGER INFO, LDB, LDX, N, NRHS
|
||
|
* DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION BERR( * ), D( * ), DF( * ), FERR( * ),
|
||
|
* $ RWORK( * )
|
||
|
* COMPLEX*16 B( LDB, * ), E( * ), EF( * ), WORK( * ),
|
||
|
* $ X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZPTSVX uses the factorization A = L*D*L**H to compute the solution
|
||
|
*> to a complex system of linear equations A*X = B, where A is an
|
||
|
*> N-by-N Hermitian positive definite tridiagonal matrix and X and B
|
||
|
*> are N-by-NRHS matrices.
|
||
|
*>
|
||
|
*> Error bounds on the solution and a condition estimate are also
|
||
|
*> provided.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Description:
|
||
|
* =================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The following steps are performed:
|
||
|
*>
|
||
|
*> 1. If FACT = 'N', the matrix A is factored as A = L*D*L**H, where L
|
||
|
*> is a unit lower bidiagonal matrix and D is diagonal. The
|
||
|
*> factorization can also be regarded as having the form
|
||
|
*> A = U**H*D*U.
|
||
|
*>
|
||
|
*> 2. If the leading principal minor of order i is not positive,
|
||
|
*> then the routine returns with INFO = i. Otherwise, the factored
|
||
|
*> form of A is used to estimate the condition number of the matrix
|
||
|
*> A. If the reciprocal of the condition number is less than machine
|
||
|
*> precision, INFO = N+1 is returned as a warning, but the routine
|
||
|
*> still goes on to solve for X and compute error bounds as
|
||
|
*> described below.
|
||
|
*>
|
||
|
*> 3. The system of equations is solved for X using the factored form
|
||
|
*> of A.
|
||
|
*>
|
||
|
*> 4. Iterative refinement is applied to improve the computed solution
|
||
|
*> matrix and calculate error bounds and backward error estimates
|
||
|
*> for it.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] FACT
|
||
|
*> \verbatim
|
||
|
*> FACT is CHARACTER*1
|
||
|
*> Specifies whether or not the factored form of the matrix
|
||
|
*> A is supplied on entry.
|
||
|
*> = 'F': On entry, DF and EF contain the factored form of A.
|
||
|
*> D, E, DF, and EF will not be modified.
|
||
|
*> = 'N': The matrix A will be copied to DF and EF and
|
||
|
*> factored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrices B and X. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The n diagonal elements of the tridiagonal matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX*16 array, dimension (N-1)
|
||
|
*> The (n-1) subdiagonal elements of the tridiagonal matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] DF
|
||
|
*> \verbatim
|
||
|
*> DF is DOUBLE PRECISION array, dimension (N)
|
||
|
*> If FACT = 'F', then DF is an input argument and on entry
|
||
|
*> contains the n diagonal elements of the diagonal matrix D
|
||
|
*> from the L*D*L**H factorization of A.
|
||
|
*> If FACT = 'N', then DF is an output argument and on exit
|
||
|
*> contains the n diagonal elements of the diagonal matrix D
|
||
|
*> from the L*D*L**H factorization of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] EF
|
||
|
*> \verbatim
|
||
|
*> EF is COMPLEX*16 array, dimension (N-1)
|
||
|
*> If FACT = 'F', then EF is an input argument and on entry
|
||
|
*> contains the (n-1) subdiagonal elements of the unit
|
||
|
*> bidiagonal factor L from the L*D*L**H factorization of A.
|
||
|
*> If FACT = 'N', then EF is an output argument and on exit
|
||
|
*> contains the (n-1) subdiagonal elements of the unit
|
||
|
*> bidiagonal factor L from the L*D*L**H factorization of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
|
||
|
*> The N-by-NRHS right hand side matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension (LDX,NRHS)
|
||
|
*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The reciprocal condition number of the matrix A. If RCOND
|
||
|
*> is less than the machine precision (in particular, if
|
||
|
*> RCOND = 0), the matrix is singular to working precision.
|
||
|
*> This condition is indicated by a return code of INFO > 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] FERR
|
||
|
*> \verbatim
|
||
|
*> FERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The forward error bound for each solution vector
|
||
|
*> X(j) (the j-th column of the solution matrix X).
|
||
|
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
|
||
|
*> is an estimated upper bound for the magnitude of the largest
|
||
|
*> element in (X(j) - XTRUE) divided by the magnitude of the
|
||
|
*> largest element in X(j).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BERR
|
||
|
*> \verbatim
|
||
|
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The componentwise relative backward error of each solution
|
||
|
*> vector X(j) (i.e., the smallest relative change in any
|
||
|
*> element of A or B that makes X(j) an exact solution).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, and i is
|
||
|
*> <= N: the leading principal minor of order i of A
|
||
|
*> is not positive, so the factorization could not
|
||
|
*> be completed, and the solution has not been
|
||
|
*> computed. RCOND = 0 is returned.
|
||
|
*> = N+1: U is nonsingular, but RCOND is less than machine
|
||
|
*> precision, meaning that the matrix is singular
|
||
|
*> to working precision. Nevertheless, the
|
||
|
*> solution and error bounds are computed because
|
||
|
*> there are a number of situations where the
|
||
|
*> computed solution can be more accurate than the
|
||
|
*> value of RCOND would suggest.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16PTsolve
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
|
||
|
$ RCOND, FERR, BERR, WORK, RWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER FACT
|
||
|
INTEGER INFO, LDB, LDX, N, NRHS
|
||
|
DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION BERR( * ), D( * ), DF( * ), FERR( * ),
|
||
|
$ RWORK( * )
|
||
|
COMPLEX*16 B( LDB, * ), E( * ), EF( * ), WORK( * ),
|
||
|
$ X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER ( ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL NOFACT
|
||
|
DOUBLE PRECISION ANORM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, ZLANHT
|
||
|
EXTERNAL LSAME, DLAMCH, ZLANHT
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, XERBLA, ZCOPY, ZLACPY, ZPTCON, ZPTRFS,
|
||
|
$ ZPTTRF, ZPTTRS
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
NOFACT = LSAME( FACT, 'N' )
|
||
|
IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -11
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZPTSVX', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOFACT ) THEN
|
||
|
*
|
||
|
* Compute the L*D*L**H (or U**H*D*U) factorization of A.
|
||
|
*
|
||
|
CALL DCOPY( N, D, 1, DF, 1 )
|
||
|
IF( N.GT.1 )
|
||
|
$ CALL ZCOPY( N-1, E, 1, EF, 1 )
|
||
|
CALL ZPTTRF( N, DF, EF, INFO )
|
||
|
*
|
||
|
* Return if INFO is non-zero.
|
||
|
*
|
||
|
IF( INFO.GT.0 )THEN
|
||
|
RCOND = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the norm of the matrix A.
|
||
|
*
|
||
|
ANORM = ZLANHT( '1', N, D, E )
|
||
|
*
|
||
|
* Compute the reciprocal of the condition number of A.
|
||
|
*
|
||
|
CALL ZPTCON( N, DF, EF, ANORM, RCOND, RWORK, INFO )
|
||
|
*
|
||
|
* Compute the solution vectors X.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
|
||
|
CALL ZPTTRS( 'Lower', N, NRHS, DF, EF, X, LDX, INFO )
|
||
|
*
|
||
|
* Use iterative refinement to improve the computed solutions and
|
||
|
* compute error bounds and backward error estimates for them.
|
||
|
*
|
||
|
CALL ZPTRFS( 'Lower', N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
|
||
|
$ BERR, WORK, RWORK, INFO )
|
||
|
*
|
||
|
* Set INFO = N+1 if the matrix is singular to working precision.
|
||
|
*
|
||
|
IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
|
||
|
$ INFO = N + 1
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZPTSVX
|
||
|
*
|
||
|
END
|