You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
536 lines
16 KiB
536 lines
16 KiB
2 years ago
|
*> \brief \b ZTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZTFTTR + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztfttr.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztfttr.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztfttr.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANSR, UPLO
|
||
|
* INTEGER INFO, N, LDA
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX*16 A( 0: LDA-1, 0: * ), ARF( 0: * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZTFTTR copies a triangular matrix A from rectangular full packed
|
||
|
*> format (TF) to standard full format (TR).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANSR
|
||
|
*> \verbatim
|
||
|
*> TRANSR is CHARACTER*1
|
||
|
*> = 'N': ARF is in Normal format;
|
||
|
*> = 'C': ARF is in Conjugate-transpose format;
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': A is upper triangular;
|
||
|
*> = 'L': A is lower triangular.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ARF
|
||
|
*> \verbatim
|
||
|
*> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
|
||
|
*> On entry, the upper or lower triangular matrix A stored in
|
||
|
*> RFP format. For a further discussion see Notes below.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension ( LDA, N )
|
||
|
*> On exit, the triangular matrix A. If UPLO = 'U', the
|
||
|
*> leading N-by-N upper triangular part of the array A contains
|
||
|
*> the upper triangular matrix, and the strictly lower
|
||
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
||
|
*> leading N-by-N lower triangular part of the array A contains
|
||
|
*> the lower triangular matrix, and the strictly upper
|
||
|
*> triangular part of A is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16OTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> We first consider Standard Packed Format when N is even.
|
||
|
*> We give an example where N = 6.
|
||
|
*>
|
||
|
*> AP is Upper AP is Lower
|
||
|
*>
|
||
|
*> 00 01 02 03 04 05 00
|
||
|
*> 11 12 13 14 15 10 11
|
||
|
*> 22 23 24 25 20 21 22
|
||
|
*> 33 34 35 30 31 32 33
|
||
|
*> 44 45 40 41 42 43 44
|
||
|
*> 55 50 51 52 53 54 55
|
||
|
*>
|
||
|
*>
|
||
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
||
|
*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
|
||
|
*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
|
||
|
*> conjugate-transpose of the first three columns of AP upper.
|
||
|
*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
|
||
|
*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
|
||
|
*> conjugate-transpose of the last three columns of AP lower.
|
||
|
*> To denote conjugate we place -- above the element. This covers the
|
||
|
*> case N even and TRANSR = 'N'.
|
||
|
*>
|
||
|
*> RFP A RFP A
|
||
|
*>
|
||
|
*> -- -- --
|
||
|
*> 03 04 05 33 43 53
|
||
|
*> -- --
|
||
|
*> 13 14 15 00 44 54
|
||
|
*> --
|
||
|
*> 23 24 25 10 11 55
|
||
|
*>
|
||
|
*> 33 34 35 20 21 22
|
||
|
*> --
|
||
|
*> 00 44 45 30 31 32
|
||
|
*> -- --
|
||
|
*> 01 11 55 40 41 42
|
||
|
*> -- -- --
|
||
|
*> 02 12 22 50 51 52
|
||
|
*>
|
||
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
||
|
*> transpose of RFP A above. One therefore gets:
|
||
|
*>
|
||
|
*>
|
||
|
*> RFP A RFP A
|
||
|
*>
|
||
|
*> -- -- -- -- -- -- -- -- -- --
|
||
|
*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
|
||
|
*> -- -- -- -- -- -- -- -- -- --
|
||
|
*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
|
||
|
*> -- -- -- -- -- -- -- -- -- --
|
||
|
*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
|
||
|
*>
|
||
|
*>
|
||
|
*> We next consider Standard Packed Format when N is odd.
|
||
|
*> We give an example where N = 5.
|
||
|
*>
|
||
|
*> AP is Upper AP is Lower
|
||
|
*>
|
||
|
*> 00 01 02 03 04 00
|
||
|
*> 11 12 13 14 10 11
|
||
|
*> 22 23 24 20 21 22
|
||
|
*> 33 34 30 31 32 33
|
||
|
*> 44 40 41 42 43 44
|
||
|
*>
|
||
|
*>
|
||
|
*> Let TRANSR = 'N'. RFP holds AP as follows:
|
||
|
*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
|
||
|
*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
|
||
|
*> conjugate-transpose of the first two columns of AP upper.
|
||
|
*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
|
||
|
*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
|
||
|
*> conjugate-transpose of the last two columns of AP lower.
|
||
|
*> To denote conjugate we place -- above the element. This covers the
|
||
|
*> case N odd and TRANSR = 'N'.
|
||
|
*>
|
||
|
*> RFP A RFP A
|
||
|
*>
|
||
|
*> -- --
|
||
|
*> 02 03 04 00 33 43
|
||
|
*> --
|
||
|
*> 12 13 14 10 11 44
|
||
|
*>
|
||
|
*> 22 23 24 20 21 22
|
||
|
*> --
|
||
|
*> 00 33 34 30 31 32
|
||
|
*> -- --
|
||
|
*> 01 11 44 40 41 42
|
||
|
*>
|
||
|
*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
|
||
|
*> transpose of RFP A above. One therefore gets:
|
||
|
*>
|
||
|
*>
|
||
|
*> RFP A RFP A
|
||
|
*>
|
||
|
*> -- -- -- -- -- -- -- -- --
|
||
|
*> 02 12 22 00 01 00 10 20 30 40 50
|
||
|
*> -- -- -- -- -- -- -- -- --
|
||
|
*> 03 13 23 33 11 33 11 21 31 41 51
|
||
|
*> -- -- -- -- -- -- -- -- --
|
||
|
*> 04 14 24 34 44 43 44 22 32 42 52
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANSR, UPLO
|
||
|
INTEGER INFO, N, LDA
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX*16 A( 0: LDA-1, 0: * ), ARF( 0: * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LOWER, NISODD, NORMALTRANSR
|
||
|
INTEGER N1, N2, K, NT, NX2, NP1X2
|
||
|
INTEGER I, J, L, IJ
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DCONJG, MAX, MOD
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
NORMALTRANSR = LSAME( TRANSR, 'N' )
|
||
|
LOWER = LSAME( UPLO, 'L' )
|
||
|
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -6
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZTFTTR', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.LE.1 ) THEN
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
IF( NORMALTRANSR ) THEN
|
||
|
A( 0, 0 ) = ARF( 0 )
|
||
|
ELSE
|
||
|
A( 0, 0 ) = DCONJG( ARF( 0 ) )
|
||
|
END IF
|
||
|
END IF
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Size of array ARF(1:2,0:nt-1)
|
||
|
*
|
||
|
NT = N*( N+1 ) / 2
|
||
|
*
|
||
|
* set N1 and N2 depending on LOWER: for N even N1=N2=K
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
N2 = N / 2
|
||
|
N1 = N - N2
|
||
|
ELSE
|
||
|
N1 = N / 2
|
||
|
N2 = N - N1
|
||
|
END IF
|
||
|
*
|
||
|
* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
|
||
|
* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
|
||
|
* N--by--(N+1)/2.
|
||
|
*
|
||
|
IF( MOD( N, 2 ).EQ.0 ) THEN
|
||
|
K = N / 2
|
||
|
NISODD = .FALSE.
|
||
|
IF( .NOT.LOWER )
|
||
|
$ NP1X2 = N + N + 2
|
||
|
ELSE
|
||
|
NISODD = .TRUE.
|
||
|
IF( .NOT.LOWER )
|
||
|
$ NX2 = N + N
|
||
|
END IF
|
||
|
*
|
||
|
IF( NISODD ) THEN
|
||
|
*
|
||
|
* N is odd
|
||
|
*
|
||
|
IF( NORMALTRANSR ) THEN
|
||
|
*
|
||
|
* N is odd and TRANSR = 'N'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
|
||
|
* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
|
||
|
* T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
|
||
|
*
|
||
|
IJ = 0
|
||
|
DO J = 0, N2
|
||
|
DO I = N1, N2 + J
|
||
|
A( N2+J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO I = J, N - 1
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
|
||
|
* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
|
||
|
* T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
|
||
|
*
|
||
|
IJ = NT - N
|
||
|
DO J = N - 1, N1, -1
|
||
|
DO I = 0, J
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO L = J - N1, N1 - 1
|
||
|
A( J-N1, L ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
IJ = IJ - NX2
|
||
|
END DO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd and TRANSR = 'C'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* SRPA for LOWER, TRANSPOSE and N is odd
|
||
|
* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
|
||
|
* T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
|
||
|
*
|
||
|
IJ = 0
|
||
|
DO J = 0, N2 - 1
|
||
|
DO I = 0, J
|
||
|
A( J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO I = N1 + J, N - 1
|
||
|
A( I, N1+J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
DO J = N2, N - 1
|
||
|
DO I = 0, N1 - 1
|
||
|
A( J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* SRPA for UPPER, TRANSPOSE and N is odd
|
||
|
* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
|
||
|
* T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2
|
||
|
*
|
||
|
IJ = 0
|
||
|
DO J = 0, N1
|
||
|
DO I = N1, N - 1
|
||
|
A( J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
DO J = 0, N1 - 1
|
||
|
DO I = 0, J
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO L = N2 + J, N - 1
|
||
|
A( N2+J, L ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even
|
||
|
*
|
||
|
IF( NORMALTRANSR ) THEN
|
||
|
*
|
||
|
* N is even and TRANSR = 'N'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
|
||
|
* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
|
||
|
* T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
|
||
|
*
|
||
|
IJ = 0
|
||
|
DO J = 0, K - 1
|
||
|
DO I = K, K + J
|
||
|
A( K+J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO I = J, N - 1
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
|
||
|
* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
|
||
|
* T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
|
||
|
*
|
||
|
IJ = NT - N - 1
|
||
|
DO J = N - 1, K, -1
|
||
|
DO I = 0, J
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO L = J - K, K - 1
|
||
|
A( J-K, L ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
IJ = IJ - NP1X2
|
||
|
END DO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even and TRANSR = 'C'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
|
||
|
* T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
|
||
|
* T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
|
||
|
*
|
||
|
IJ = 0
|
||
|
J = K
|
||
|
DO I = K, N - 1
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO J = 0, K - 2
|
||
|
DO I = 0, J
|
||
|
A( J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO I = K + 1 + J, N - 1
|
||
|
A( I, K+1+J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
DO J = K - 1, N - 1
|
||
|
DO I = 0, K - 1
|
||
|
A( J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
|
||
|
* T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
|
||
|
* T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
|
||
|
*
|
||
|
IJ = 0
|
||
|
DO J = 0, K
|
||
|
DO I = K, N - 1
|
||
|
A( J, I ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
DO J = 0, K - 2
|
||
|
DO I = 0, J
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
DO L = K + 1 + J, N - 1
|
||
|
A( K+1+J, L ) = DCONJG( ARF( IJ ) )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* Note that here J = K-1
|
||
|
*
|
||
|
DO I = 0, J
|
||
|
A( I, J ) = ARF( IJ )
|
||
|
IJ = IJ + 1
|
||
|
END DO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZTFTTR
|
||
|
*
|
||
|
END
|