Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

381 lines
12 KiB

2 years ago
*> \brief \b ZUNGTSQR_ROW
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZUNGTSQR_ROW + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunrgtsqr_row.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunrgtsqr_row.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunrgtsqr_row.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
* $ LWORK, INFO )
* IMPLICIT NONE
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZUNGTSQR_ROW generates an M-by-N complex matrix Q_out with
*> orthonormal columns from the output of ZLATSQR. These N orthonormal
*> columns are the first N columns of a product of complex unitary
*> matrices Q(k)_in of order M, which are returned by ZLATSQR in
*> a special format.
*>
*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
*>
*> The input matrices Q(k)_in are stored in row and column blocks in A.
*> See the documentation of ZLATSQR for more details on the format of
*> Q(k)_in, where each Q(k)_in is represented by block Householder
*> transformations. This routine calls an auxiliary routine ZLARFB_GETT,
*> where the computation is performed on each individual block. The
*> algorithm first sweeps NB-sized column blocks from the right to left
*> starting in the bottom row block and continues to the top row block
*> (hence _ROW in the routine name). This sweep is in reverse order of
*> the order in which ZLATSQR generates the output blocks.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The row block size used by ZLATSQR to return
*> arrays A and T. MB > N.
*> (Note that if MB > M, then M is used instead of MB
*> as the row block size).
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The column block size used by ZLATSQR to return
*> arrays A and T. NB >= 1.
*> (Note that if NB > N, then N is used instead of NB
*> as the column block size).
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*>
*> On entry:
*>
*> The elements on and above the diagonal are not used as
*> input. The elements below the diagonal represent the unit
*> lower-trapezoidal blocked matrix V computed by ZLATSQR
*> that defines the input matrices Q_in(k) (ones on the
*> diagonal are not stored). See ZLATSQR for more details.
*>
*> On exit:
*>
*> The array A contains an M-by-N orthonormal matrix Q_out,
*> i.e the columns of A are orthogonal unit vectors.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is COMPLEX*16 array,
*> dimension (LDT, N * NIRB)
*> where NIRB = Number_of_input_row_blocks
*> = MAX( 1, CEIL((M-N)/(MB-N)) )
*> Let NICB = Number_of_input_col_blocks
*> = CEIL(N/NB)
*>
*> The upper-triangular block reflectors used to define the
*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
*> reflectors are stored in compact form in NIRB block
*> reflector sequences. Each of the NIRB block reflector
*> sequences is stored in a larger NB-by-N column block of T
*> and consists of NICB smaller NB-by-NB upper-triangular
*> column blocks. See ZLATSQR for more details on the format
*> of T.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T.
*> LDT >= max(1,min(NB,N)).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> The dimension of the array WORK.
*> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
*> where NBLOCAL=MIN(NB,N).
*> If LWORK = -1, then a workspace query is assumed.
*> The routine only calculates the optimal size of the WORK
*> array, returns this value as the first entry of the WORK
*> array, and no error message related to LWORK is issued
*> by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*>
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2020, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
$ LWORK, INFO )
IMPLICIT NONE
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 CONE, CZERO
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
$ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
$ KB, KB_LAST, KNB, MB1
* ..
* .. Local Arrays ..
COMPLEX*16 DUMMY( 1, 1 )
* ..
* .. External Subroutines ..
EXTERNAL ZLARFB_GETT, ZLASET, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
LQUERY = LWORK.EQ.-1
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
INFO = -2
ELSE IF( MB.LE.N ) THEN
INFO = -3
ELSE IF( NB.LT.1 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
*
NBLOCAL = MIN( NB, N )
*
* Determine the workspace size.
*
IF( INFO.EQ.0 ) THEN
LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
END IF
*
* Handle error in the input parameters and handle the workspace query.
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZUNGTSQR_ROW', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
WORK( 1 ) = DCMPLX( LWORKOPT )
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N ).EQ.0 ) THEN
WORK( 1 ) = DCMPLX( LWORKOPT )
RETURN
END IF
*
* (0) Set the upper-triangular part of the matrix A to zero and
* its diagonal elements to one.
*
CALL ZLASET('U', M, N, CZERO, CONE, A, LDA )
*
* KB_LAST is the column index of the last column block reflector
* in the matrices T and V.
*
KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
*
*
* (1) Bottom-up loop over row blocks of A, except the top row block.
* NOTE: If MB>=M, then the loop is never executed.
*
IF ( MB.LT.M ) THEN
*
* MB2 is the row blocking size for the row blocks before the
* first top row block in the matrix A. IB is the row index for
* the row blocks in the matrix A before the first top row block.
* IB_BOTTOM is the row index for the last bottom row block
* in the matrix A. JB_T is the column index of the corresponding
* column block in the matrix T.
*
* Initialize variables.
*
* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
* including the first row block.
*
MB2 = MB - N
M_PLUS_ONE = M + 1
ITMP = ( M - MB - 1 ) / MB2
IB_BOTTOM = ITMP * MB2 + MB + 1
NUM_ALL_ROW_BLOCKS = ITMP + 2
JB_T = NUM_ALL_ROW_BLOCKS * N + 1
*
DO IB = IB_BOTTOM, MB+1, -MB2
*
* Determine the block size IMB for the current row block
* in the matrix A.
*
IMB = MIN( M_PLUS_ONE - IB, MB2 )
*
* Determine the column index JB_T for the current column block
* in the matrix T.
*
JB_T = JB_T - N
*
* Apply column blocks of H in the row block from right to left.
*
* KB is the column index of the current column block reflector
* in the matrices T and V.
*
DO KB = KB_LAST, 1, -NBLOCAL
*
* Determine the size of the current column block KNB in
* the matrices T and V.
*
KNB = MIN( NBLOCAL, N - KB + 1 )
*
CALL ZLARFB_GETT( 'I', IMB, N-KB+1, KNB,
$ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
$ A( IB, KB ), LDA, WORK, KNB )
*
END DO
*
END DO
*
END IF
*
* (2) Top row block of A.
* NOTE: If MB>=M, then we have only one row block of A of size M
* and we work on the entire matrix A.
*
MB1 = MIN( MB, M )
*
* Apply column blocks of H in the top row block from right to left.
*
* KB is the column index of the current block reflector in
* the matrices T and V.
*
DO KB = KB_LAST, 1, -NBLOCAL
*
* Determine the size of the current column block KNB in
* the matrices T and V.
*
KNB = MIN( NBLOCAL, N - KB + 1 )
*
IF( MB1-KB-KNB+1.EQ.0 ) THEN
*
* In SLARFB_GETT parameters, when M=0, then the matrix B
* does not exist, hence we need to pass a dummy array
* reference DUMMY(1,1) to B with LDDUMMY=1.
*
CALL ZLARFB_GETT( 'N', 0, N-KB+1, KNB,
$ T( 1, KB ), LDT, A( KB, KB ), LDA,
$ DUMMY( 1, 1 ), 1, WORK, KNB )
ELSE
CALL ZLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
$ T( 1, KB ), LDT, A( KB, KB ), LDA,
$ A( KB+KNB, KB), LDA, WORK, KNB )
END IF
*
END DO
*
WORK( 1 ) = DCMPLX( LWORKOPT )
RETURN
*
* End of ZUNGTSQR_ROW
*
END