Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2112 lines
74 KiB

2 years ago
*> \brief \b CDRVST2STG
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
* NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
* LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
* IWORK, LIWORK, RESULT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
* $ NSIZES, NTYPES
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
* REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
* $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
* COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
* $ V( LDU, * ), WORK( * ), Z( LDU, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CDRVST2STG checks the Hermitian eigenvalue problem drivers.
*>
*> CHEEVD computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian matrix,
*> using a divide-and-conquer algorithm.
*>
*> CHEEVX computes selected eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian matrix.
*>
*> CHEEVR computes selected eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian matrix
*> using the Relatively Robust Representation where it can.
*>
*> CHPEVD computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian matrix in packed
*> storage, using a divide-and-conquer algorithm.
*>
*> CHPEVX computes selected eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian matrix in packed
*> storage.
*>
*> CHBEVD computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian band matrix,
*> using a divide-and-conquer algorithm.
*>
*> CHBEVX computes selected eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian band matrix.
*>
*> CHEEV computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian matrix.
*>
*> CHPEV computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian matrix in packed
*> storage.
*>
*> CHBEV computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian band matrix.
*>
*> When CDRVST2STG is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified. For each size ("n")
*> and each type of matrix, one matrix will be generated and used
*> to test the appropriate drivers. For each matrix and each
*> driver routine called, the following tests will be performed:
*>
*> (1) | A - Z D Z' | / ( |A| n ulp )
*>
*> (2) | I - Z Z' | / ( n ulp )
*>
*> (3) | D1 - D2 | / ( |D1| ulp )
*>
*> where Z is the matrix of eigenvectors returned when the
*> eigenvector option is given and D1 and D2 are the eigenvalues
*> returned with and without the eigenvector option.
*>
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
*> each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1) The zero matrix.
*> (2) The identity matrix.
*>
*> (3) A diagonal matrix with evenly spaced entries
*> 1, ..., ULP and random signs.
*> (ULP = (first number larger than 1) - 1 )
*> (4) A diagonal matrix with geometrically spaced entries
*> 1, ..., ULP and random signs.
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*> and random signs.
*>
*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
*>
*> (8) A matrix of the form U* D U, where U is unitary and
*> D has evenly spaced entries 1, ..., ULP with random signs
*> on the diagonal.
*>
*> (9) A matrix of the form U* D U, where U is unitary and
*> D has geometrically spaced entries 1, ..., ULP with random
*> signs on the diagonal.
*>
*> (10) A matrix of the form U* D U, where U is unitary and
*> D has "clustered" entries 1, ULP,..., ULP with random
*> signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Symmetric matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*> (16) A band matrix with half bandwidth randomly chosen between
*> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
*> with random signs.
*> (17) Same as (16), but multiplied by SQRT( overflow threshold )
*> (18) Same as (16), but multiplied by SQRT( underflow threshold )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> NSIZES INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> CDRVST2STG does nothing. It must be at least zero.
*> Not modified.
*>
*> NN INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. The values must be at least
*> zero.
*> Not modified.
*>
*> NTYPES INTEGER
*> The number of elements in DOTYPE. If it is zero, CDRVST2STG
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A. This
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> Not modified.
*>
*> DOTYPE LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> Not modified.
*>
*> ISEED INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to CDRVST2STG to continue the same random number
*> sequence.
*> Modified.
*>
*> THRESH REAL
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. It must be at least zero.
*> Not modified.
*>
*> NOUNIT INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> Not modified.
*>
*> A COMPLEX array, dimension (LDA , max(NN))
*> Used to hold the matrix whose eigenvalues are to be
*> computed. On exit, A contains the last matrix actually
*> used.
*> Modified.
*>
*> LDA INTEGER
*> The leading dimension of A. It must be at
*> least 1 and at least max( NN ).
*> Not modified.
*>
*> D1 REAL array, dimension (max(NN))
*> The eigenvalues of A, as computed by CSTEQR simultaneously
*> with Z. On exit, the eigenvalues in D1 correspond with the
*> matrix in A.
*> Modified.
*>
*> D2 REAL array, dimension (max(NN))
*> The eigenvalues of A, as computed by CSTEQR if Z is not
*> computed. On exit, the eigenvalues in D2 correspond with
*> the matrix in A.
*> Modified.
*>
*> D3 REAL array, dimension (max(NN))
*> The eigenvalues of A, as computed by SSTERF. On exit, the
*> eigenvalues in D3 correspond with the matrix in A.
*> Modified.
*>
*> WA1 REAL array, dimension
*>
*> WA2 REAL array, dimension
*>
*> WA3 REAL array, dimension
*>
*> U COMPLEX array, dimension (LDU, max(NN))
*> The unitary matrix computed by CHETRD + CUNGC3.
*> Modified.
*>
*> LDU INTEGER
*> The leading dimension of U, Z, and V. It must be at
*> least 1 and at least max( NN ).
*> Not modified.
*>
*> V COMPLEX array, dimension (LDU, max(NN))
*> The Housholder vectors computed by CHETRD in reducing A to
*> tridiagonal form.
*> Modified.
*>
*> TAU COMPLEX array, dimension (max(NN))
*> The Householder factors computed by CHETRD in reducing A
*> to tridiagonal form.
*> Modified.
*>
*> Z COMPLEX array, dimension (LDU, max(NN))
*> The unitary matrix of eigenvectors computed by CHEEVD,
*> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX.
*> Modified.
*>
*> WORK - COMPLEX array of dimension ( LWORK )
*> Workspace.
*> Modified.
*>
*> LWORK - INTEGER
*> The number of entries in WORK. This must be at least
*> 2*max( NN(j), 2 )**2.
*> Not modified.
*>
*> RWORK REAL array, dimension (3*max(NN))
*> Workspace.
*> Modified.
*>
*> LRWORK - INTEGER
*> The number of entries in RWORK.
*>
*> IWORK INTEGER array, dimension (6*max(NN))
*> Workspace.
*> Modified.
*>
*> LIWORK - INTEGER
*> The number of entries in IWORK.
*>
*> RESULT REAL array, dimension (??)
*> The values computed by the tests described above.
*> The values are currently limited to 1/ulp, to avoid
*> overflow.
*> Modified.
*>
*> INFO INTEGER
*> If 0, then everything ran OK.
*> -1: NSIZES < 0
*> -2: Some NN(j) < 0
*> -3: NTYPES < 0
*> -5: THRESH < 0
*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
*> -16: LDU < 1 or LDU < NMAX.
*> -21: LWORK too small.
*> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF,
*> or SORMC2 returns an error code, the
*> absolute value of it is returned.
*> Modified.
*>
*>-----------------------------------------------------------------------
*>
*> Some Local Variables and Parameters:
*> ---- ----- --------- --- ----------
*> ZERO, ONE Real 0 and 1.
*> MAXTYP The number of types defined.
*> NTEST The number of tests performed, or which can
*> be performed so far, for the current matrix.
*> NTESTT The total number of tests performed so far.
*> NMAX Largest value in NN.
*> NMATS The number of matrices generated so far.
*> NERRS The number of tests which have exceeded THRESH
*> so far (computed by SLAFTS).
*> COND, IMODE Values to be passed to the matrix generators.
*> ANORM Norm of A; passed to matrix generators.
*>
*> OVFL, UNFL Overflow and underflow thresholds.
*> ULP, ULPINV Finest relative precision and its inverse.
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
*> The following four arrays decode JTYPE:
*> KTYPE(j) The general type (1-10) for type "j".
*> KMODE(j) The MODE value to be passed to the matrix
*> generator for type "j".
*> KMAGN(j) The order of magnitude ( O(1),
*> O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
$ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
$ IWORK, LIWORK, RESULT, INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
$ NSIZES, NTYPES
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
$ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
$ V( LDU, * ), WORK( * ), Z( LDU, * )
* ..
*
* =====================================================================
*
*
* .. Parameters ..
REAL ZERO, ONE, TWO, TEN
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
$ TEN = 10.0E+0 )
REAL HALF
PARAMETER ( HALF = ONE / TWO )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 18 )
* ..
* .. Local Scalars ..
LOGICAL BADNN
CHARACTER UPLO
INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX,
$ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
$ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC,
$ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX,
$ NTEST, NTESTT
REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
$ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
$ VL, VU
* ..
* .. Local Arrays ..
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
$ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
$ KTYPE( MAXTYP )
* ..
* .. External Functions ..
REAL SLAMCH, SLARND, SSXT1
EXTERNAL SLAMCH, SLARND, SSXT1
* ..
* .. External Subroutines ..
EXTERNAL ALASVM, SLAFTS, XERBLA, CHBEV, CHBEVD,
$ CHBEVX, CHEEV, CHEEVD, CHEEVR, CHEEVX, CHET21,
$ CHET22, CHPEV, CHPEVD, CHPEVX, CLACPY, CLASET,
$ CHEEVD_2STAGE, CHEEVR_2STAGE, CHEEVX_2STAGE,
$ CHEEV_2STAGE, CHBEV_2STAGE, CHBEVD_2STAGE,
$ CHBEVX_2STAGE, CLATMR, CLATMS
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL, INT, LOG, MAX, MIN, SQRT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
$ 2, 3, 1, 2, 3 /
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0, 4, 4, 4 /
* ..
* .. Executable Statements ..
*
* 1) Check for errors
*
NTESTT = 0
INFO = 0
*
BADNN = .FALSE.
NMAX = 1
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.NMAX ) THEN
INFO = -9
ELSE IF( LDU.LT.NMAX ) THEN
INFO = -16
ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
INFO = -22
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CDRVST2STG', -INFO )
RETURN
END IF
*
* Quick return if nothing to do
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
* More Important constants
*
UNFL = SLAMCH( 'Safe minimum' )
OVFL = SLAMCH( 'Overflow' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
ULPINV = ONE / ULP
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
*
* Loop over sizes, types
*
DO 20 I = 1, 4
ISEED2( I ) = ISEED( I )
ISEED3( I ) = ISEED( I )
20 CONTINUE
*
NERRS = 0
NMATS = 0
*
DO 1220 JSIZE = 1, NSIZES
N = NN( JSIZE )
IF( N.GT.0 ) THEN
LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
LWEDC = MAX( 2*N+N*N, 2*N*N )
LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
LIWEDC = 3 + 5*N
ELSE
LWEDC = 2
LRWEDC = 8
LIWEDC = 8
END IF
ANINV = ONE / REAL( MAX( 1, N ) )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 1210 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 1210
NMATS = NMATS + 1
NTEST = 0
*
DO 30 J = 1, 4
IOLDSD( J ) = ISEED( J )
30 CONTINUE
*
* 2) Compute "A"
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random log Hermitian, w/ eigenvalues
* =6 random (none)
* =7 random diagonal
* =8 random Hermitian
* =9 band Hermitian, w/ eigenvalues
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 110
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*ANINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*N*ULPINV
GO TO 70
*
70 CONTINUE
*
CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
IINFO = 0
COND = ULPINV
*
* Special Matrices -- Identity & Jordan block
*
* Zero
*
IF( ITYPE.EQ.1 ) THEN
IINFO = 0
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
DO 80 JCOL = 1, N
A( JCOL, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
$ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Hermitian, eigenvalues specified
*
CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
$ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random eigenvalues
*
CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Hermitian, random eigenvalues
*
CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Hermitian banded, eigenvalues specified
*
IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) )
CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
$ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK,
$ IINFO )
*
* Store as dense matrix for most routines.
*
CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
DO 100 IDIAG = -IHBW, IHBW
IROW = IHBW - IDIAG + 1
J1 = MAX( 1, IDIAG+1 )
J2 = MIN( N, N+IDIAG )
DO 90 J = J1, J2
I = J - IDIAG
A( I, J ) = U( IROW, J )
90 CONTINUE
100 CONTINUE
ELSE
IINFO = 1
END IF
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
110 CONTINUE
*
ABSTOL = UNFL + UNFL
IF( N.LE.1 ) THEN
IL = 1
IU = N
ELSE
IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
IF( IL.GT.IU ) THEN
ITEMP = IL
IL = IU
IU = ITEMP
END IF
END IF
*
* Perform tests storing upper or lower triangular
* part of matrix.
*
DO 1200 IUPLO = 0, 1
IF( IUPLO.EQ.0 ) THEN
UPLO = 'L'
ELSE
UPLO = 'U'
END IF
*
* Call CHEEVD and CHEEVX.
*
CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
*
NTEST = NTEST + 1
CALL CHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
$ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEVD(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 130
END IF
END IF
*
* Do tests 1 and 2.
*
CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 2
CALL CHEEVD_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK,
$ LWORK, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEVD_2STAGE(N,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 130
END IF
END IF
*
* Do test 3.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 120 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
120 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
130 CONTINUE
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 1
*
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
IF( IL.NE.1 ) THEN
VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
IF( IU.NE.N ) THEN
VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
ELSE
TEMP3 = ZERO
VL = ZERO
VU = ONE
END IF
*
CALL CHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 150
END IF
END IF
*
* Do tests 4 and 5.
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL CHEEVX_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
$ IL, IU, ABSTOL, M2, WA2, Z, LDU,
$ WORK, LWORK, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEVX_2STAGE(N,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 150
END IF
END IF
*
* Do test 6.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 140 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
140 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
150 CONTINUE
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 1
*
CALL CHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 160
END IF
END IF
*
* Do tests 7 and 8.
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
CALL CHEEVX_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
$ IL, IU, ABSTOL, M3, WA3, Z, LDU,
$ WORK, LWORK, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEVX_2STAGE(N,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 160
END IF
END IF
*
* Do test 9.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
160 CONTINUE
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 1
*
CALL CHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 170
END IF
END IF
*
* Do tests 10 and 11.
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
CALL CHEEVX_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
$ IL, IU, ABSTOL, M3, WA3, Z, LDU,
$ WORK, LWORK, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEVX_2STAGE(N,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 170
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 170
END IF
*
* Do test 12.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
170 CONTINUE
*
* Call CHPEVD and CHPEVX.
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
* Load array WORK with the upper or lower triangular
* part of the matrix in packed form.
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 190 J = 1, N
DO 180 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
180 CONTINUE
190 CONTINUE
ELSE
INDX = 1
DO 210 J = 1, N
DO 200 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
200 CONTINUE
210 CONTINUE
END IF
*
NTEST = NTEST + 1
INDWRK = N*( N+1 ) / 2 + 1
CALL CHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
$ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
$ LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVD(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 270
END IF
END IF
*
* Do tests 13 and 14.
*
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 230 J = 1, N
DO 220 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
220 CONTINUE
230 CONTINUE
ELSE
INDX = 1
DO 250 J = 1, N
DO 240 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
240 CONTINUE
250 CONTINUE
END IF
*
NTEST = NTEST + 2
INDWRK = N*( N+1 ) / 2 + 1
CALL CHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
$ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
$ LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVD(N,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 270
END IF
END IF
*
* Do test 15.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 260 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
260 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
* Load array WORK with the upper or lower triangular part
* of the matrix in packed form.
*
270 CONTINUE
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 290 J = 1, N
DO 280 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
280 CONTINUE
290 CONTINUE
ELSE
INDX = 1
DO 310 J = 1, N
DO 300 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
300 CONTINUE
310 CONTINUE
END IF
*
NTEST = NTEST + 1
*
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
IF( IL.NE.1 ) THEN
VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
IF( IU.NE.N ) THEN
VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
ELSE
TEMP3 = ZERO
VL = ZERO
VU = ONE
END IF
*
CALL CHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 370
END IF
END IF
*
* Do tests 16 and 17.
*
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 330 J = 1, N
DO 320 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
320 CONTINUE
330 CONTINUE
ELSE
INDX = 1
DO 350 J = 1, N
DO 340 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
340 CONTINUE
350 CONTINUE
END IF
*
CALL CHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 370
END IF
END IF
*
* Do test 18.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 360 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
360 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
370 CONTINUE
NTEST = NTEST + 1
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 390 J = 1, N
DO 380 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
380 CONTINUE
390 CONTINUE
ELSE
INDX = 1
DO 410 J = 1, N
DO 400 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
400 CONTINUE
410 CONTINUE
END IF
*
CALL CHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 460
END IF
END IF
*
* Do tests 19 and 20.
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 430 J = 1, N
DO 420 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
420 CONTINUE
430 CONTINUE
ELSE
INDX = 1
DO 450 J = 1, N
DO 440 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
440 CONTINUE
450 CONTINUE
END IF
*
CALL CHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 460
END IF
END IF
*
* Do test 21.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
460 CONTINUE
NTEST = NTEST + 1
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 480 J = 1, N
DO 470 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
470 CONTINUE
480 CONTINUE
ELSE
INDX = 1
DO 500 J = 1, N
DO 490 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
490 CONTINUE
500 CONTINUE
END IF
*
CALL CHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 550
END IF
END IF
*
* Do tests 22 and 23.
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 520 J = 1, N
DO 510 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
510 CONTINUE
520 CONTINUE
ELSE
INDX = 1
DO 540 J = 1, N
DO 530 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
530 CONTINUE
540 CONTINUE
END IF
*
CALL CHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 550
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 550
END IF
*
* Do test 24.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
550 CONTINUE
*
* Call CHBEVD and CHBEVX.
*
IF( JTYPE.LE.7 ) THEN
KD = 0
ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
KD = MAX( N-1, 0 )
ELSE
KD = IHBW
END IF
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
IF( IUPLO.EQ.1 ) THEN
DO 570 J = 1, N
DO 560 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
560 CONTINUE
570 CONTINUE
ELSE
DO 590 J = 1, N
DO 580 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
580 CONTINUE
590 CONTINUE
END IF
*
NTEST = NTEST + 1
CALL CHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
$ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )'CHBEVD(V,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 650
END IF
END IF
*
* Do tests 25 and 26.
*
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
DO 610 J = 1, N
DO 600 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
600 CONTINUE
610 CONTINUE
ELSE
DO 630 J = 1, N
DO 620 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
620 CONTINUE
630 CONTINUE
END IF
*
NTEST = NTEST + 2
CALL CHBEVD_2STAGE( 'N', UPLO, N, KD, V, LDU, D3,
$ Z, LDU, WORK, LWORK, RWORK,
$ LRWEDC, IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )
$ 'CHBEVD_2STAGE(N,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 650
END IF
END IF
*
* Do test 27.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 640 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
640 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
650 CONTINUE
IF( IUPLO.EQ.1 ) THEN
DO 670 J = 1, N
DO 660 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
660 CONTINUE
670 CONTINUE
ELSE
DO 690 J = 1, N
DO 680 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
680 CONTINUE
690 CONTINUE
END IF
*
NTEST = NTEST + 1
CALL CHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK,
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHBEVX(V,A,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 750
END IF
END IF
*
* Do tests 28 and 29.
*
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
DO 710 J = 1, N
DO 700 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
700 CONTINUE
710 CONTINUE
ELSE
DO 730 J = 1, N
DO 720 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
720 CONTINUE
730 CONTINUE
END IF
*
CALL CHBEVX_2STAGE( 'N', 'A', UPLO, N, KD, V, LDU,
$ U, LDU, VL, VU, IL, IU, ABSTOL,
$ M2, WA2, Z, LDU, WORK, LWORK,
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )
$ 'CHBEVX_2STAGE(N,A,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 750
END IF
END IF
*
* Do test 30.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 740 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
740 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
750 CONTINUE
NTEST = NTEST + 1
IF( IUPLO.EQ.1 ) THEN
DO 770 J = 1, N
DO 760 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
760 CONTINUE
770 CONTINUE
ELSE
DO 790 J = 1, N
DO 780 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
780 CONTINUE
790 CONTINUE
END IF
*
CALL CHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,I,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 840
END IF
END IF
*
* Do tests 31 and 32.
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
DO 810 J = 1, N
DO 800 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
800 CONTINUE
810 CONTINUE
ELSE
DO 830 J = 1, N
DO 820 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
820 CONTINUE
830 CONTINUE
END IF
CALL CHBEVX_2STAGE( 'N', 'I', UPLO, N, KD, V, LDU,
$ U, LDU, VL, VU, IL, IU, ABSTOL,
$ M3, WA3, Z, LDU, WORK, LWORK,
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )
$ 'CHBEVX_2STAGE(N,I,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 840
END IF
END IF
*
* Do test 33.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
840 CONTINUE
NTEST = NTEST + 1
IF( IUPLO.EQ.1 ) THEN
DO 860 J = 1, N
DO 850 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
850 CONTINUE
860 CONTINUE
ELSE
DO 880 J = 1, N
DO 870 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
870 CONTINUE
880 CONTINUE
END IF
CALL CHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,V,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 930
END IF
END IF
*
* Do tests 34 and 35.
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
DO 900 J = 1, N
DO 890 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
890 CONTINUE
900 CONTINUE
ELSE
DO 920 J = 1, N
DO 910 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
910 CONTINUE
920 CONTINUE
END IF
CALL CHBEVX_2STAGE( 'N', 'V', UPLO, N, KD, V, LDU,
$ U, LDU, VL, VU, IL, IU, ABSTOL,
$ M3, WA3, Z, LDU, WORK, LWORK,
$ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )
$ 'CHBEVX_2STAGE(N,V,' // UPLO //
$ ')', IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 930
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 930
END IF
*
* Do test 36.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
930 CONTINUE
*
* Call CHEEV
*
CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
*
NTEST = NTEST + 1
CALL CHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEV(V,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 950
END IF
END IF
*
* Do tests 37 and 38
*
CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 2
CALL CHEEV_2STAGE( 'N', UPLO, N, A, LDU, D3,
$ WORK, LWORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEV_2STAGE(N,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 950
END IF
END IF
*
* Do test 39
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 940 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
940 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
950 CONTINUE
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
* Call CHPEV
*
* Load array WORK with the upper or lower triangular
* part of the matrix in packed form.
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 970 J = 1, N
DO 960 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
960 CONTINUE
970 CONTINUE
ELSE
INDX = 1
DO 990 J = 1, N
DO 980 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
980 CONTINUE
990 CONTINUE
END IF
*
NTEST = NTEST + 1
INDWRK = N*( N+1 ) / 2 + 1
CALL CHPEV( 'V', UPLO, N, WORK, D1, Z, LDU,
$ WORK( INDWRK ), RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEV(V,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1050
END IF
END IF
*
* Do tests 40 and 41.
*
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 1010 J = 1, N
DO 1000 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1000 CONTINUE
1010 CONTINUE
ELSE
INDX = 1
DO 1030 J = 1, N
DO 1020 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1020 CONTINUE
1030 CONTINUE
END IF
*
NTEST = NTEST + 2
INDWRK = N*( N+1 ) / 2 + 1
CALL CHPEV( 'N', UPLO, N, WORK, D3, Z, LDU,
$ WORK( INDWRK ), RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHPEV(N,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1050
END IF
END IF
*
* Do test 42
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1040 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
1040 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
1050 CONTINUE
*
* Call CHBEV
*
IF( JTYPE.LE.7 ) THEN
KD = 0
ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
KD = MAX( N-1, 0 )
ELSE
KD = IHBW
END IF
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
IF( IUPLO.EQ.1 ) THEN
DO 1070 J = 1, N
DO 1060 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1060 CONTINUE
1070 CONTINUE
ELSE
DO 1090 J = 1, N
DO 1080 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1080 CONTINUE
1090 CONTINUE
END IF
*
NTEST = NTEST + 1
CALL CHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
$ RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )'CHBEV(V,' // UPLO // ')',
$ IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1140
END IF
END IF
*
* Do tests 43 and 44.
*
CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
DO 1110 J = 1, N
DO 1100 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1100 CONTINUE
1110 CONTINUE
ELSE
DO 1130 J = 1, N
DO 1120 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1120 CONTINUE
1130 CONTINUE
END IF
*
NTEST = NTEST + 2
CALL CHBEV_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
$ WORK, LWORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )
$ 'CHBEV_2STAGE(N,' // UPLO // ')',
$ IINFO, N, KD, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1140
END IF
END IF
*
1140 CONTINUE
*
* Do test 45.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1150 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
1150 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
NTEST = NTEST + 1
CALL CHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1170
END IF
END IF
*
* Do tests 45 and 46 (or ... )
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL CHEEVR_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
$ IL, IU, ABSTOL, M2, WA2, Z, LDU,
$ IWORK, WORK, LWORK, RWORK, LRWORK,
$ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEVR_2STAGE(N,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1170
END IF
END IF
*
* Do test 47 (or ... )
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1160 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
1160 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
1170 CONTINUE
*
NTEST = NTEST + 1
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
CALL CHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1180
END IF
END IF
*
* Do tests 48 and 49 (or +??)
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
CALL CHEEVR_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
$ IL, IU, ABSTOL, M3, WA3, Z, LDU,
$ IWORK, WORK, LWORK, RWORK, LRWORK,
$ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEVR_2STAGE(N,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1180
END IF
END IF
*
* Do test 50 (or +??)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, ULP*TEMP3 )
1180 CONTINUE
*
NTEST = NTEST + 1
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
CALL CHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1190
END IF
END IF
*
* Do tests 51 and 52 (or +??)
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
CALL CHEEVR_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
$ IL, IU, ABSTOL, M3, WA3, Z, LDU,
$ IWORK, WORK, LWORK, RWORK, LRWORK,
$ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )
$ 'CHEEVR_2STAGE(N,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1190
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 1190
END IF
*
* Do test 52 (or +??)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
*
*
*
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
1190 CONTINUE
*
1200 CONTINUE
*
* End of Loop -- Check for RESULT(j) > THRESH
*
NTESTT = NTESTT + NTEST
CALL SLAFTS( 'CST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
$ THRESH, NOUNIT, NERRS )
*
1210 CONTINUE
1220 CONTINUE
*
* Summary
*
CALL ALASVM( 'CST', NOUNIT, NERRS, NTESTT, 0 )
*
9999 FORMAT( ' CDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
$ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
9998 FORMAT( ' CDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
$ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
$ ')' )
*
RETURN
*
* End of CDRVST2STG
*
END