You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
4.7 KiB
189 lines
4.7 KiB
2 years ago
|
*> \brief \b DBDT02
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER LDB, LDC, LDU, M, N
|
||
|
* DOUBLE PRECISION RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION B( LDB, * ), C( LDC, * ), U( LDU, * ),
|
||
|
* $ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DBDT02 tests the change of basis C = U**H * B by computing the
|
||
|
*> residual
|
||
|
*>
|
||
|
*> RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ),
|
||
|
*>
|
||
|
*> where B and C are M by N matrices, U is an M by M orthogonal matrix,
|
||
|
*> and EPS is the machine precision.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrices B and C and the order of
|
||
|
*> the matrix Q.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrices B and C.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB,N)
|
||
|
*> The m by n matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension (LDC,N)
|
||
|
*> The m by n matrix C, assumed to contain U**H * B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDC
|
||
|
*> \verbatim
|
||
|
*> LDC is INTEGER
|
||
|
*> The leading dimension of the array C. LDC >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] U
|
||
|
*> \verbatim
|
||
|
*> U is DOUBLE PRECISION array, dimension (LDU,M)
|
||
|
*> The m by m orthogonal matrix U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of the array U. LDU >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is DOUBLE PRECISION
|
||
|
*> RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ),
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER LDB, LDC, LDU, M, N
|
||
|
DOUBLE PRECISION RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION B( LDB, * ), C( LDC, * ), U( LDU, * ),
|
||
|
$ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* ======================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER J
|
||
|
DOUBLE PRECISION BNORM, EPS, REALMN
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DASUM, DLAMCH, DLANGE
|
||
|
EXTERNAL DASUM, DLAMCH, DLANGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, DGEMV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
RESID = ZERO
|
||
|
IF( M.LE.0 .OR. N.LE.0 )
|
||
|
$ RETURN
|
||
|
REALMN = DBLE( MAX( M, N ) )
|
||
|
EPS = DLAMCH( 'Precision' )
|
||
|
*
|
||
|
* Compute norm(B - U * C)
|
||
|
*
|
||
|
DO 10 J = 1, N
|
||
|
CALL DCOPY( M, B( 1, J ), 1, WORK, 1 )
|
||
|
CALL DGEMV( 'No transpose', M, M, -ONE, U, LDU, C( 1, J ), 1,
|
||
|
$ ONE, WORK, 1 )
|
||
|
RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Compute norm of B.
|
||
|
*
|
||
|
BNORM = DLANGE( '1', M, N, B, LDB, WORK )
|
||
|
*
|
||
|
IF( BNORM.LE.ZERO ) THEN
|
||
|
IF( RESID.NE.ZERO )
|
||
|
$ RESID = ONE / EPS
|
||
|
ELSE
|
||
|
IF( BNORM.GE.RESID ) THEN
|
||
|
RESID = ( RESID / BNORM ) / ( REALMN*EPS )
|
||
|
ELSE
|
||
|
IF( BNORM.LT.ONE ) THEN
|
||
|
RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
|
||
|
$ ( REALMN*EPS )
|
||
|
ELSE
|
||
|
RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DBDT02
|
||
|
*
|
||
|
END
|