You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
447 lines
13 KiB
447 lines
13 KiB
2 years ago
|
*> \brief \b DLATM4
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
|
||
|
* TRIANG, IDIST, ISEED, A, LDA )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
|
||
|
* DOUBLE PRECISION AMAGN, RCOND, TRIANG
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER ISEED( 4 )
|
||
|
* DOUBLE PRECISION A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLATM4 generates basic square matrices, which may later be
|
||
|
*> multiplied by others in order to produce test matrices. It is
|
||
|
*> intended mainly to be used to test the generalized eigenvalue
|
||
|
*> routines.
|
||
|
*>
|
||
|
*> It first generates the diagonal and (possibly) subdiagonal,
|
||
|
*> according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND.
|
||
|
*> It then fills in the upper triangle with random numbers, if TRIANG is
|
||
|
*> non-zero.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] ITYPE
|
||
|
*> \verbatim
|
||
|
*> ITYPE is INTEGER
|
||
|
*> The "type" of matrix on the diagonal and sub-diagonal.
|
||
|
*> If ITYPE < 0, then type abs(ITYPE) is generated and then
|
||
|
*> swapped end for end (A(I,J) := A'(N-J,N-I).) See also
|
||
|
*> the description of AMAGN and ISIGN.
|
||
|
*>
|
||
|
*> Special types:
|
||
|
*> = 0: the zero matrix.
|
||
|
*> = 1: the identity.
|
||
|
*> = 2: a transposed Jordan block.
|
||
|
*> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block
|
||
|
*> followed by a k x k identity block, where k=(N-1)/2.
|
||
|
*> If N is even, then k=(N-2)/2, and a zero diagonal entry
|
||
|
*> is tacked onto the end.
|
||
|
*>
|
||
|
*> Diagonal types. The diagonal consists of NZ1 zeros, then
|
||
|
*> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE
|
||
|
*> specifies the nonzero diagonal entries as follows:
|
||
|
*> = 4: 1, ..., k
|
||
|
*> = 5: 1, RCOND, ..., RCOND
|
||
|
*> = 6: 1, ..., 1, RCOND
|
||
|
*> = 7: 1, a, a^2, ..., a^(k-1)=RCOND
|
||
|
*> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
|
||
|
*> = 9: random numbers chosen from (RCOND,1)
|
||
|
*> = 10: random numbers with distribution IDIST (see DLARND.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NZ1
|
||
|
*> \verbatim
|
||
|
*> NZ1 is INTEGER
|
||
|
*> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
|
||
|
*> be zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NZ2
|
||
|
*> \verbatim
|
||
|
*> NZ2 is INTEGER
|
||
|
*> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
|
||
|
*> be zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ISIGN
|
||
|
*> \verbatim
|
||
|
*> ISIGN is INTEGER
|
||
|
*> = 0: The sign of the diagonal and subdiagonal entries will
|
||
|
*> be left unchanged.
|
||
|
*> = 1: The diagonal and subdiagonal entries will have their
|
||
|
*> sign changed at random.
|
||
|
*> = 2: If ITYPE is 2 or 3, then the same as ISIGN=1.
|
||
|
*> Otherwise, with probability 0.5, odd-even pairs of
|
||
|
*> diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be
|
||
|
*> converted to a 2x2 block by pre- and post-multiplying
|
||
|
*> by distinct random orthogonal rotations. The remaining
|
||
|
*> diagonal entries will have their sign changed at random.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AMAGN
|
||
|
*> \verbatim
|
||
|
*> AMAGN is DOUBLE PRECISION
|
||
|
*> The diagonal and subdiagonal entries will be multiplied by
|
||
|
*> AMAGN.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> If abs(ITYPE) > 4, then the smallest diagonal entry will be
|
||
|
*> entry will be RCOND. RCOND must be between 0 and 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRIANG
|
||
|
*> \verbatim
|
||
|
*> TRIANG is DOUBLE PRECISION
|
||
|
*> The entries above the diagonal will be random numbers with
|
||
|
*> magnitude bounded by TRIANG (i.e., random numbers multiplied
|
||
|
*> by TRIANG.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IDIST
|
||
|
*> \verbatim
|
||
|
*> IDIST is INTEGER
|
||
|
*> Specifies the type of distribution to be used to generate a
|
||
|
*> random matrix.
|
||
|
*> = 1: UNIFORM( 0, 1 )
|
||
|
*> = 2: UNIFORM( -1, 1 )
|
||
|
*> = 3: NORMAL ( 0, 1 )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> On entry ISEED specifies the seed of the random number
|
||
|
*> generator. The values of ISEED are changed on exit, and can
|
||
|
*> be used in the next call to DLATM4 to continue the same
|
||
|
*> random number sequence.
|
||
|
*> Note: ISEED(4) should be odd, for the random number generator
|
||
|
*> used at present.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
||
|
*> Array to be computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> Leading dimension of A. Must be at least 1 and at least N.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
|
||
|
$ TRIANG, IDIST, ISEED, A, LDA )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
|
||
|
DOUBLE PRECISION AMAGN, RCOND, TRIANG
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
DOUBLE PRECISION A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE, TWO
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
|
||
|
DOUBLE PRECISION HALF
|
||
|
PARAMETER ( HALF = ONE / TWO )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, IOFF, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND,
|
||
|
$ KLEN
|
||
|
DOUBLE PRECISION ALPHA, CL, CR, SAFMIN, SL, SR, SV1, SV2, TEMP
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH, DLARAN, DLARND
|
||
|
EXTERNAL DLAMCH, DLARAN, DLARND
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLASET
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, EXP, LOG, MAX, MIN, MOD, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( N.LE.0 )
|
||
|
$ RETURN
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
|
||
|
*
|
||
|
* Insure a correct ISEED
|
||
|
*
|
||
|
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
|
||
|
$ ISEED( 4 ) = ISEED( 4 ) + 1
|
||
|
*
|
||
|
* Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
|
||
|
* and RCOND
|
||
|
*
|
||
|
IF( ITYPE.NE.0 ) THEN
|
||
|
IF( ABS( ITYPE ).GE.4 ) THEN
|
||
|
KBEG = MAX( 1, MIN( N, NZ1+1 ) )
|
||
|
KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
|
||
|
KLEN = KEND + 1 - KBEG
|
||
|
ELSE
|
||
|
KBEG = 1
|
||
|
KEND = N
|
||
|
KLEN = N
|
||
|
END IF
|
||
|
ISDB = 1
|
||
|
ISDE = 0
|
||
|
GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
|
||
|
$ 180, 200 )ABS( ITYPE )
|
||
|
*
|
||
|
* abs(ITYPE) = 1: Identity
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
DO 20 JD = 1, N
|
||
|
A( JD, JD ) = ONE
|
||
|
20 CONTINUE
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 2: Transposed Jordan block
|
||
|
*
|
||
|
30 CONTINUE
|
||
|
DO 40 JD = 1, N - 1
|
||
|
A( JD+1, JD ) = ONE
|
||
|
40 CONTINUE
|
||
|
ISDB = 1
|
||
|
ISDE = N - 1
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 3: Transposed Jordan block, followed by the
|
||
|
* identity.
|
||
|
*
|
||
|
50 CONTINUE
|
||
|
K = ( N-1 ) / 2
|
||
|
DO 60 JD = 1, K
|
||
|
A( JD+1, JD ) = ONE
|
||
|
60 CONTINUE
|
||
|
ISDB = 1
|
||
|
ISDE = K
|
||
|
DO 70 JD = K + 2, 2*K + 1
|
||
|
A( JD, JD ) = ONE
|
||
|
70 CONTINUE
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 4: 1,...,k
|
||
|
*
|
||
|
80 CONTINUE
|
||
|
DO 90 JD = KBEG, KEND
|
||
|
A( JD, JD ) = DBLE( JD-NZ1 )
|
||
|
90 CONTINUE
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 5: One large D value:
|
||
|
*
|
||
|
100 CONTINUE
|
||
|
DO 110 JD = KBEG + 1, KEND
|
||
|
A( JD, JD ) = RCOND
|
||
|
110 CONTINUE
|
||
|
A( KBEG, KBEG ) = ONE
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 6: One small D value:
|
||
|
*
|
||
|
120 CONTINUE
|
||
|
DO 130 JD = KBEG, KEND - 1
|
||
|
A( JD, JD ) = ONE
|
||
|
130 CONTINUE
|
||
|
A( KEND, KEND ) = RCOND
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 7: Exponentially distributed D values:
|
||
|
*
|
||
|
140 CONTINUE
|
||
|
A( KBEG, KBEG ) = ONE
|
||
|
IF( KLEN.GT.1 ) THEN
|
||
|
ALPHA = RCOND**( ONE / DBLE( KLEN-1 ) )
|
||
|
DO 150 I = 2, KLEN
|
||
|
A( NZ1+I, NZ1+I ) = ALPHA**DBLE( I-1 )
|
||
|
150 CONTINUE
|
||
|
END IF
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 8: Arithmetically distributed D values:
|
||
|
*
|
||
|
160 CONTINUE
|
||
|
A( KBEG, KBEG ) = ONE
|
||
|
IF( KLEN.GT.1 ) THEN
|
||
|
ALPHA = ( ONE-RCOND ) / DBLE( KLEN-1 )
|
||
|
DO 170 I = 2, KLEN
|
||
|
A( NZ1+I, NZ1+I ) = DBLE( KLEN-I )*ALPHA + RCOND
|
||
|
170 CONTINUE
|
||
|
END IF
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
|
||
|
*
|
||
|
180 CONTINUE
|
||
|
ALPHA = LOG( RCOND )
|
||
|
DO 190 JD = KBEG, KEND
|
||
|
A( JD, JD ) = EXP( ALPHA*DLARAN( ISEED ) )
|
||
|
190 CONTINUE
|
||
|
GO TO 220
|
||
|
*
|
||
|
* abs(ITYPE) = 10: Randomly distributed D values from DIST
|
||
|
*
|
||
|
200 CONTINUE
|
||
|
DO 210 JD = KBEG, KEND
|
||
|
A( JD, JD ) = DLARND( IDIST, ISEED )
|
||
|
210 CONTINUE
|
||
|
*
|
||
|
220 CONTINUE
|
||
|
*
|
||
|
* Scale by AMAGN
|
||
|
*
|
||
|
DO 230 JD = KBEG, KEND
|
||
|
A( JD, JD ) = AMAGN*DBLE( A( JD, JD ) )
|
||
|
230 CONTINUE
|
||
|
DO 240 JD = ISDB, ISDE
|
||
|
A( JD+1, JD ) = AMAGN*DBLE( A( JD+1, JD ) )
|
||
|
240 CONTINUE
|
||
|
*
|
||
|
* If ISIGN = 1 or 2, assign random signs to diagonal and
|
||
|
* subdiagonal
|
||
|
*
|
||
|
IF( ISIGN.GT.0 ) THEN
|
||
|
DO 250 JD = KBEG, KEND
|
||
|
IF( DBLE( A( JD, JD ) ).NE.ZERO ) THEN
|
||
|
IF( DLARAN( ISEED ).GT.HALF )
|
||
|
$ A( JD, JD ) = -A( JD, JD )
|
||
|
END IF
|
||
|
250 CONTINUE
|
||
|
DO 260 JD = ISDB, ISDE
|
||
|
IF( DBLE( A( JD+1, JD ) ).NE.ZERO ) THEN
|
||
|
IF( DLARAN( ISEED ).GT.HALF )
|
||
|
$ A( JD+1, JD ) = -A( JD+1, JD )
|
||
|
END IF
|
||
|
260 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Reverse if ITYPE < 0
|
||
|
*
|
||
|
IF( ITYPE.LT.0 ) THEN
|
||
|
DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
|
||
|
TEMP = A( JD, JD )
|
||
|
A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
|
||
|
A( KBEG+KEND-JD, KBEG+KEND-JD ) = TEMP
|
||
|
270 CONTINUE
|
||
|
DO 280 JD = 1, ( N-1 ) / 2
|
||
|
TEMP = A( JD+1, JD )
|
||
|
A( JD+1, JD ) = A( N+1-JD, N-JD )
|
||
|
A( N+1-JD, N-JD ) = TEMP
|
||
|
280 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* If ISIGN = 2, and no subdiagonals already, then apply
|
||
|
* random rotations to make 2x2 blocks.
|
||
|
*
|
||
|
IF( ISIGN.EQ.2 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 ) THEN
|
||
|
SAFMIN = DLAMCH( 'S' )
|
||
|
DO 290 JD = KBEG, KEND - 1, 2
|
||
|
IF( DLARAN( ISEED ).GT.HALF ) THEN
|
||
|
*
|
||
|
* Rotation on left.
|
||
|
*
|
||
|
CL = TWO*DLARAN( ISEED ) - ONE
|
||
|
SL = TWO*DLARAN( ISEED ) - ONE
|
||
|
TEMP = ONE / MAX( SAFMIN, SQRT( CL**2+SL**2 ) )
|
||
|
CL = CL*TEMP
|
||
|
SL = SL*TEMP
|
||
|
*
|
||
|
* Rotation on right.
|
||
|
*
|
||
|
CR = TWO*DLARAN( ISEED ) - ONE
|
||
|
SR = TWO*DLARAN( ISEED ) - ONE
|
||
|
TEMP = ONE / MAX( SAFMIN, SQRT( CR**2+SR**2 ) )
|
||
|
CR = CR*TEMP
|
||
|
SR = SR*TEMP
|
||
|
*
|
||
|
* Apply
|
||
|
*
|
||
|
SV1 = A( JD, JD )
|
||
|
SV2 = A( JD+1, JD+1 )
|
||
|
A( JD, JD ) = CL*CR*SV1 + SL*SR*SV2
|
||
|
A( JD+1, JD ) = -SL*CR*SV1 + CL*SR*SV2
|
||
|
A( JD, JD+1 ) = -CL*SR*SV1 + SL*CR*SV2
|
||
|
A( JD+1, JD+1 ) = SL*SR*SV1 + CL*CR*SV2
|
||
|
END IF
|
||
|
290 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Fill in upper triangle (except for 2x2 blocks)
|
||
|
*
|
||
|
IF( TRIANG.NE.ZERO ) THEN
|
||
|
IF( ISIGN.NE.2 .OR. ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
|
||
|
IOFF = 1
|
||
|
ELSE
|
||
|
IOFF = 2
|
||
|
DO 300 JR = 1, N - 1
|
||
|
IF( A( JR+1, JR ).EQ.ZERO )
|
||
|
$ A( JR, JR+1 ) = TRIANG*DLARND( IDIST, ISEED )
|
||
|
300 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
DO 320 JC = 2, N
|
||
|
DO 310 JR = 1, JC - IOFF
|
||
|
A( JR, JC ) = TRIANG*DLARND( IDIST, ISEED )
|
||
|
310 CONTINUE
|
||
|
320 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLATM4
|
||
|
*
|
||
|
END
|