You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
958 lines
33 KiB
958 lines
33 KiB
2 years ago
|
*> \brief \b SDRVES
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
|
||
|
* NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
|
||
|
* LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
|
||
|
* REAL THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL BWORK( * ), DOTYPE( * )
|
||
|
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||
|
* REAL A( LDA, * ), H( LDA, * ), HT( LDA, * ),
|
||
|
* $ RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
|
||
|
* $ WORK( * ), WR( * ), WRT( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SDRVES checks the nonsymmetric eigenvalue (Schur form) problem
|
||
|
*> driver SGEES.
|
||
|
*>
|
||
|
*> When SDRVES is called, a number of matrix "sizes" ("n's") and a
|
||
|
*> number of matrix "types" are specified. For each size ("n")
|
||
|
*> and each type of matrix, one matrix will be generated and used
|
||
|
*> to test the nonsymmetric eigenroutines. For each matrix, 13
|
||
|
*> tests will be performed:
|
||
|
*>
|
||
|
*> (1) 0 if T is in Schur form, 1/ulp otherwise
|
||
|
*> (no sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (2) | A - VS T VS' | / ( n |A| ulp )
|
||
|
*>
|
||
|
*> Here VS is the matrix of Schur eigenvectors, and T is in Schur
|
||
|
*> form (no sorting of eigenvalues).
|
||
|
*>
|
||
|
*> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
|
||
|
*>
|
||
|
*> (4) 0 if WR+sqrt(-1)*WI are eigenvalues of T
|
||
|
*> 1/ulp otherwise
|
||
|
*> (no sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (5) 0 if T(with VS) = T(without VS),
|
||
|
*> 1/ulp otherwise
|
||
|
*> (no sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS),
|
||
|
*> 1/ulp otherwise
|
||
|
*> (no sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (7) 0 if T is in Schur form, 1/ulp otherwise
|
||
|
*> (with sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (8) | A - VS T VS' | / ( n |A| ulp )
|
||
|
*>
|
||
|
*> Here VS is the matrix of Schur eigenvectors, and T is in Schur
|
||
|
*> form (with sorting of eigenvalues).
|
||
|
*>
|
||
|
*> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
|
||
|
*>
|
||
|
*> (10) 0 if WR+sqrt(-1)*WI are eigenvalues of T
|
||
|
*> 1/ulp otherwise
|
||
|
*> (with sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (11) 0 if T(with VS) = T(without VS),
|
||
|
*> 1/ulp otherwise
|
||
|
*> (with sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS),
|
||
|
*> 1/ulp otherwise
|
||
|
*> (with sorting of eigenvalues)
|
||
|
*>
|
||
|
*> (13) if sorting worked and SDIM is the number of
|
||
|
*> eigenvalues which were SELECTed
|
||
|
*>
|
||
|
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
|
||
|
*> each element NN(j) specifies one size.
|
||
|
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
||
|
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
|
||
|
*> Currently, the list of possible types is:
|
||
|
*>
|
||
|
*> (1) The zero matrix.
|
||
|
*> (2) The identity matrix.
|
||
|
*> (3) A (transposed) Jordan block, with 1's on the diagonal.
|
||
|
*>
|
||
|
*> (4) A diagonal matrix with evenly spaced entries
|
||
|
*> 1, ..., ULP and random signs.
|
||
|
*> (ULP = (first number larger than 1) - 1 )
|
||
|
*> (5) A diagonal matrix with geometrically spaced entries
|
||
|
*> 1, ..., ULP and random signs.
|
||
|
*> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
|
||
|
*> and random signs.
|
||
|
*>
|
||
|
*> (7) Same as (4), but multiplied by a constant near
|
||
|
*> the overflow threshold
|
||
|
*> (8) Same as (4), but multiplied by a constant near
|
||
|
*> the underflow threshold
|
||
|
*>
|
||
|
*> (9) A matrix of the form U' T U, where U is orthogonal and
|
||
|
*> T has evenly spaced entries 1, ..., ULP with random signs
|
||
|
*> on the diagonal and random O(1) entries in the upper
|
||
|
*> triangle.
|
||
|
*>
|
||
|
*> (10) A matrix of the form U' T U, where U is orthogonal and
|
||
|
*> T has geometrically spaced entries 1, ..., ULP with random
|
||
|
*> signs on the diagonal and random O(1) entries in the upper
|
||
|
*> triangle.
|
||
|
*>
|
||
|
*> (11) A matrix of the form U' T U, where U is orthogonal and
|
||
|
*> T has "clustered" entries 1, ULP,..., ULP with random
|
||
|
*> signs on the diagonal and random O(1) entries in the upper
|
||
|
*> triangle.
|
||
|
*>
|
||
|
*> (12) A matrix of the form U' T U, where U is orthogonal and
|
||
|
*> T has real or complex conjugate paired eigenvalues randomly
|
||
|
*> chosen from ( ULP, 1 ) and random O(1) entries in the upper
|
||
|
*> triangle.
|
||
|
*>
|
||
|
*> (13) A matrix of the form X' T X, where X has condition
|
||
|
*> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
|
||
|
*> with random signs on the diagonal and random O(1) entries
|
||
|
*> in the upper triangle.
|
||
|
*>
|
||
|
*> (14) A matrix of the form X' T X, where X has condition
|
||
|
*> SQRT( ULP ) and T has geometrically spaced entries
|
||
|
*> 1, ..., ULP with random signs on the diagonal and random
|
||
|
*> O(1) entries in the upper triangle.
|
||
|
*>
|
||
|
*> (15) A matrix of the form X' T X, where X has condition
|
||
|
*> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
|
||
|
*> with random signs on the diagonal and random O(1) entries
|
||
|
*> in the upper triangle.
|
||
|
*>
|
||
|
*> (16) A matrix of the form X' T X, where X has condition
|
||
|
*> SQRT( ULP ) and T has real or complex conjugate paired
|
||
|
*> eigenvalues randomly chosen from ( ULP, 1 ) and random
|
||
|
*> O(1) entries in the upper triangle.
|
||
|
*>
|
||
|
*> (17) Same as (16), but multiplied by a constant
|
||
|
*> near the overflow threshold
|
||
|
*> (18) Same as (16), but multiplied by a constant
|
||
|
*> near the underflow threshold
|
||
|
*>
|
||
|
*> (19) Nonsymmetric matrix with random entries chosen from (-1,1).
|
||
|
*> If N is at least 4, all entries in first two rows and last
|
||
|
*> row, and first column and last two columns are zero.
|
||
|
*> (20) Same as (19), but multiplied by a constant
|
||
|
*> near the overflow threshold
|
||
|
*> (21) Same as (19), but multiplied by a constant
|
||
|
*> near the underflow threshold
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] NSIZES
|
||
|
*> \verbatim
|
||
|
*> NSIZES is INTEGER
|
||
|
*> The number of sizes of matrices to use. If it is zero,
|
||
|
*> SDRVES does nothing. It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NN
|
||
|
*> \verbatim
|
||
|
*> NN is INTEGER array, dimension (NSIZES)
|
||
|
*> An array containing the sizes to be used for the matrices.
|
||
|
*> Zero values will be skipped. The values must be at least
|
||
|
*> zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NTYPES
|
||
|
*> \verbatim
|
||
|
*> NTYPES is INTEGER
|
||
|
*> The number of elements in DOTYPE. If it is zero, SDRVES
|
||
|
*> does nothing. It must be at least zero. If it is MAXTYP+1
|
||
|
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
|
||
|
*> defined, which is to use whatever matrix is in A. This
|
||
|
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
|
||
|
*> DOTYPE(MAXTYP+1) is .TRUE. .
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DOTYPE
|
||
|
*> \verbatim
|
||
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
||
|
*> If DOTYPE(j) is .TRUE., then for each size in NN a
|
||
|
*> matrix of that size and of type j will be generated.
|
||
|
*> If NTYPES is smaller than the maximum number of types
|
||
|
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
|
||
|
*> MAXTYP will not be generated. If NTYPES is larger
|
||
|
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
|
||
|
*> will be ignored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> On entry ISEED specifies the seed of the random number
|
||
|
*> generator. The array elements should be between 0 and 4095;
|
||
|
*> if not they will be reduced mod 4096. Also, ISEED(4) must
|
||
|
*> be odd. The random number generator uses a linear
|
||
|
*> congruential sequence limited to small integers, and so
|
||
|
*> should produce machine independent random numbers. The
|
||
|
*> values of ISEED are changed on exit, and can be used in the
|
||
|
*> next call to SDRVES to continue the same random number
|
||
|
*> sequence.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] THRESH
|
||
|
*> \verbatim
|
||
|
*> THRESH is REAL
|
||
|
*> A test will count as "failed" if the "error", computed as
|
||
|
*> described above, exceeds THRESH. Note that the error
|
||
|
*> is scaled to be O(1), so THRESH should be a reasonably
|
||
|
*> small multiple of 1, e.g., 10 or 100. In particular,
|
||
|
*> it should not depend on the precision (single vs. double)
|
||
|
*> or the size of the matrix. It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NOUNIT
|
||
|
*> \verbatim
|
||
|
*> NOUNIT is INTEGER
|
||
|
*> The FORTRAN unit number for printing out error messages
|
||
|
*> (e.g., if a routine returns INFO not equal to 0.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA, max(NN))
|
||
|
*> Used to hold the matrix whose eigenvalues are to be
|
||
|
*> computed. On exit, A contains the last matrix actually used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A, and H. LDA must be at
|
||
|
*> least 1 and at least max(NN).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] H
|
||
|
*> \verbatim
|
||
|
*> H is REAL array, dimension (LDA, max(NN))
|
||
|
*> Another copy of the test matrix A, modified by SGEES.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] HT
|
||
|
*> \verbatim
|
||
|
*> HT is REAL array, dimension (LDA, max(NN))
|
||
|
*> Yet another copy of the test matrix A, modified by SGEES.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WR
|
||
|
*> \verbatim
|
||
|
*> WR is REAL array, dimension (max(NN))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WI
|
||
|
*> \verbatim
|
||
|
*> WI is REAL array, dimension (max(NN))
|
||
|
*>
|
||
|
*> The real and imaginary parts of the eigenvalues of A.
|
||
|
*> On exit, WR + WI*i are the eigenvalues of the matrix in A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WRT
|
||
|
*> \verbatim
|
||
|
*> WRT is REAL array, dimension (max(NN))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WIT
|
||
|
*> \verbatim
|
||
|
*> WIT is REAL array, dimension (max(NN))
|
||
|
*>
|
||
|
*> Like WR, WI, these arrays contain the eigenvalues of A,
|
||
|
*> but those computed when SGEES only computes a partial
|
||
|
*> eigendecomposition, i.e. not Schur vectors
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VS
|
||
|
*> \verbatim
|
||
|
*> VS is REAL array, dimension (LDVS, max(NN))
|
||
|
*> VS holds the computed Schur vectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVS
|
||
|
*> \verbatim
|
||
|
*> LDVS is INTEGER
|
||
|
*> Leading dimension of VS. Must be at least max(1,max(NN)).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is REAL array, dimension (13)
|
||
|
*> The values computed by the 13 tests described above.
|
||
|
*> The values are currently limited to 1/ulp, to avoid overflow.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (NWORK)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NWORK
|
||
|
*> \verbatim
|
||
|
*> NWORK is INTEGER
|
||
|
*> The number of entries in WORK. This must be at least
|
||
|
*> 5*NN(j)+2*NN(j)**2 for all j.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (max(NN))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BWORK
|
||
|
*> \verbatim
|
||
|
*> BWORK is LOGICAL array, dimension (max(NN))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> If 0, then everything ran OK.
|
||
|
*> -1: NSIZES < 0
|
||
|
*> -2: Some NN(j) < 0
|
||
|
*> -3: NTYPES < 0
|
||
|
*> -6: THRESH < 0
|
||
|
*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
|
||
|
*> -17: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ).
|
||
|
*> -20: NWORK too small.
|
||
|
*> If SLATMR, SLATMS, SLATME or SGEES returns an error code,
|
||
|
*> the absolute value of it is returned.
|
||
|
*>
|
||
|
*>-----------------------------------------------------------------------
|
||
|
*>
|
||
|
*> Some Local Variables and Parameters:
|
||
|
*> ---- ----- --------- --- ----------
|
||
|
*>
|
||
|
*> ZERO, ONE Real 0 and 1.
|
||
|
*> MAXTYP The number of types defined.
|
||
|
*> NMAX Largest value in NN.
|
||
|
*> NERRS The number of tests which have exceeded THRESH
|
||
|
*> COND, CONDS,
|
||
|
*> IMODE Values to be passed to the matrix generators.
|
||
|
*> ANORM Norm of A; passed to matrix generators.
|
||
|
*>
|
||
|
*> OVFL, UNFL Overflow and underflow thresholds.
|
||
|
*> ULP, ULPINV Finest relative precision and its inverse.
|
||
|
*> RTULP, RTULPI Square roots of the previous 4 values.
|
||
|
*>
|
||
|
*> The following four arrays decode JTYPE:
|
||
|
*> KTYPE(j) The general type (1-10) for type "j".
|
||
|
*> KMODE(j) The MODE value to be passed to the matrix
|
||
|
*> generator for type "j".
|
||
|
*> KMAGN(j) The order of magnitude ( O(1),
|
||
|
*> O(overflow^(1/2) ), O(underflow^(1/2) )
|
||
|
*> KCONDS(j) Selectw whether CONDS is to be 1 or
|
||
|
*> 1/sqrt(ulp). (0 means irrelevant.)
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup single_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
|
||
|
$ NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
|
||
|
$ LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
|
||
|
REAL THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL BWORK( * ), DOTYPE( * )
|
||
|
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
|
||
|
REAL A( LDA, * ), H( LDA, * ), HT( LDA, * ),
|
||
|
$ RESULT( 13 ), VS( LDVS, * ), WI( * ), WIT( * ),
|
||
|
$ WORK( * ), WR( * ), WRT( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
||
|
INTEGER MAXTYP
|
||
|
PARAMETER ( MAXTYP = 21 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL BADNN
|
||
|
CHARACTER SORT
|
||
|
CHARACTER*3 PATH
|
||
|
INTEGER I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL,
|
||
|
$ JSIZE, JTYPE, KNTEIG, LWORK, MTYPES, N,
|
||
|
$ NERRS, NFAIL, NMAX, NNWORK, NTEST, NTESTF,
|
||
|
$ NTESTT, RSUB, SDIM
|
||
|
REAL ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TMP,
|
||
|
$ ULP, ULPINV, UNFL
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
CHARACTER ADUMMA( 1 )
|
||
|
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
|
||
|
$ KMAGN( MAXTYP ), KMODE( MAXTYP ),
|
||
|
$ KTYPE( MAXTYP )
|
||
|
REAL RES( 2 )
|
||
|
* ..
|
||
|
* .. Arrays in Common ..
|
||
|
LOGICAL SELVAL( 20 )
|
||
|
REAL SELWI( 20 ), SELWR( 20 )
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
INTEGER SELDIM, SELOPT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL SSLECT
|
||
|
REAL SLAMCH
|
||
|
EXTERNAL SSLECT, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEES, SHST01, SLACPY, SLASUM, SLATME, SLATMR,
|
||
|
$ SLATMS, SLASET, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, SIGN, SQRT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
|
||
|
DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
|
||
|
$ 3, 1, 2, 3 /
|
||
|
DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
|
||
|
$ 1, 5, 5, 5, 4, 3, 1 /
|
||
|
DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
PATH( 1: 1 ) = 'Single precision'
|
||
|
PATH( 2: 3 ) = 'ES'
|
||
|
*
|
||
|
* Check for errors
|
||
|
*
|
||
|
NTESTT = 0
|
||
|
NTESTF = 0
|
||
|
INFO = 0
|
||
|
SELOPT = 0
|
||
|
*
|
||
|
* Important constants
|
||
|
*
|
||
|
BADNN = .FALSE.
|
||
|
NMAX = 0
|
||
|
DO 10 J = 1, NSIZES
|
||
|
NMAX = MAX( NMAX, NN( J ) )
|
||
|
IF( NN( J ).LT.0 )
|
||
|
$ BADNN = .TRUE.
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Check for errors
|
||
|
*
|
||
|
IF( NSIZES.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( BADNN ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( NTYPES.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( THRESH.LT.ZERO ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( NOUNIT.LE.0 ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN
|
||
|
INFO = -17
|
||
|
ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
|
||
|
INFO = -20
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SDRVES', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if nothing to do
|
||
|
*
|
||
|
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* More Important constants
|
||
|
*
|
||
|
UNFL = SLAMCH( 'Safe minimum' )
|
||
|
OVFL = ONE / UNFL
|
||
|
ULP = SLAMCH( 'Precision' )
|
||
|
ULPINV = ONE / ULP
|
||
|
RTULP = SQRT( ULP )
|
||
|
RTULPI = ONE / RTULP
|
||
|
*
|
||
|
* Loop over sizes, types
|
||
|
*
|
||
|
NERRS = 0
|
||
|
*
|
||
|
DO 270 JSIZE = 1, NSIZES
|
||
|
N = NN( JSIZE )
|
||
|
MTYPES = MAXTYP
|
||
|
IF( NSIZES.EQ.1 .AND. NTYPES.EQ.MAXTYP+1 )
|
||
|
$ MTYPES = MTYPES + 1
|
||
|
*
|
||
|
DO 260 JTYPE = 1, MTYPES
|
||
|
IF( .NOT.DOTYPE( JTYPE ) )
|
||
|
$ GO TO 260
|
||
|
*
|
||
|
* Save ISEED in case of an error.
|
||
|
*
|
||
|
DO 20 J = 1, 4
|
||
|
IOLDSD( J ) = ISEED( J )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Compute "A"
|
||
|
*
|
||
|
* Control parameters:
|
||
|
*
|
||
|
* KMAGN KCONDS KMODE KTYPE
|
||
|
* =1 O(1) 1 clustered 1 zero
|
||
|
* =2 large large clustered 2 identity
|
||
|
* =3 small exponential Jordan
|
||
|
* =4 arithmetic diagonal, (w/ eigenvalues)
|
||
|
* =5 random log symmetric, w/ eigenvalues
|
||
|
* =6 random general, w/ eigenvalues
|
||
|
* =7 random diagonal
|
||
|
* =8 random symmetric
|
||
|
* =9 random general
|
||
|
* =10 random triangular
|
||
|
*
|
||
|
IF( MTYPES.GT.MAXTYP )
|
||
|
$ GO TO 90
|
||
|
*
|
||
|
ITYPE = KTYPE( JTYPE )
|
||
|
IMODE = KMODE( JTYPE )
|
||
|
*
|
||
|
* Compute norm
|
||
|
*
|
||
|
GO TO ( 30, 40, 50 )KMAGN( JTYPE )
|
||
|
*
|
||
|
30 CONTINUE
|
||
|
ANORM = ONE
|
||
|
GO TO 60
|
||
|
*
|
||
|
40 CONTINUE
|
||
|
ANORM = OVFL*ULP
|
||
|
GO TO 60
|
||
|
*
|
||
|
50 CONTINUE
|
||
|
ANORM = UNFL*ULPINV
|
||
|
GO TO 60
|
||
|
*
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
|
||
|
IINFO = 0
|
||
|
COND = ULPINV
|
||
|
*
|
||
|
* Special Matrices -- Identity & Jordan block
|
||
|
*
|
||
|
* Zero
|
||
|
*
|
||
|
IF( ITYPE.EQ.1 ) THEN
|
||
|
IINFO = 0
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.2 ) THEN
|
||
|
*
|
||
|
* Identity
|
||
|
*
|
||
|
DO 70 JCOL = 1, N
|
||
|
A( JCOL, JCOL ) = ANORM
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.3 ) THEN
|
||
|
*
|
||
|
* Jordan Block
|
||
|
*
|
||
|
DO 80 JCOL = 1, N
|
||
|
A( JCOL, JCOL ) = ANORM
|
||
|
IF( JCOL.GT.1 )
|
||
|
$ A( JCOL, JCOL-1 ) = ONE
|
||
|
80 CONTINUE
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.4 ) THEN
|
||
|
*
|
||
|
* Diagonal Matrix, [Eigen]values Specified
|
||
|
*
|
||
|
CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
|
||
|
$ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
|
||
|
$ IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.5 ) THEN
|
||
|
*
|
||
|
* Symmetric, eigenvalues specified
|
||
|
*
|
||
|
CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
|
||
|
$ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
|
||
|
$ IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.6 ) THEN
|
||
|
*
|
||
|
* General, eigenvalues specified
|
||
|
*
|
||
|
IF( KCONDS( JTYPE ).EQ.1 ) THEN
|
||
|
CONDS = ONE
|
||
|
ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
|
||
|
CONDS = RTULPI
|
||
|
ELSE
|
||
|
CONDS = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
ADUMMA( 1 ) = ' '
|
||
|
CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
|
||
|
$ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
|
||
|
$ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
|
||
|
$ IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.7 ) THEN
|
||
|
*
|
||
|
* Diagonal, random eigenvalues
|
||
|
*
|
||
|
CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
|
||
|
$ 'T', 'N', WORK( N+1 ), 1, ONE,
|
||
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
|
||
|
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.8 ) THEN
|
||
|
*
|
||
|
* Symmetric, random eigenvalues
|
||
|
*
|
||
|
CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
|
||
|
$ 'T', 'N', WORK( N+1 ), 1, ONE,
|
||
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
|
||
|
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.9 ) THEN
|
||
|
*
|
||
|
* General, random eigenvalues
|
||
|
*
|
||
|
CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
|
||
|
$ 'T', 'N', WORK( N+1 ), 1, ONE,
|
||
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
|
||
|
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
|
||
|
IF( N.GE.4 ) THEN
|
||
|
CALL SLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
|
||
|
CALL SLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
|
||
|
$ LDA )
|
||
|
CALL SLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
|
||
|
$ LDA )
|
||
|
CALL SLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
|
||
|
$ LDA )
|
||
|
END IF
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.10 ) THEN
|
||
|
*
|
||
|
* Triangular, random eigenvalues
|
||
|
*
|
||
|
CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
|
||
|
$ 'T', 'N', WORK( N+1 ), 1, ONE,
|
||
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
|
||
|
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
IINFO = 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
|
||
|
$ IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Test for minimal and generous workspace
|
||
|
*
|
||
|
DO 250 IWK = 1, 2
|
||
|
IF( IWK.EQ.1 ) THEN
|
||
|
NNWORK = 3*N
|
||
|
ELSE
|
||
|
NNWORK = 5*N + 2*N**2
|
||
|
END IF
|
||
|
NNWORK = MAX( NNWORK, 1 )
|
||
|
*
|
||
|
* Initialize RESULT
|
||
|
*
|
||
|
DO 100 J = 1, 13
|
||
|
RESULT( J ) = -ONE
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
* Test with and without sorting of eigenvalues
|
||
|
*
|
||
|
DO 210 ISORT = 0, 1
|
||
|
IF( ISORT.EQ.0 ) THEN
|
||
|
SORT = 'N'
|
||
|
RSUB = 0
|
||
|
ELSE
|
||
|
SORT = 'S'
|
||
|
RSUB = 6
|
||
|
END IF
|
||
|
*
|
||
|
* Compute Schur form and Schur vectors, and test them
|
||
|
*
|
||
|
CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
|
||
|
CALL SGEES( 'V', SORT, SSLECT, N, H, LDA, SDIM, WR,
|
||
|
$ WI, VS, LDVS, WORK, NNWORK, BWORK, IINFO )
|
||
|
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
|
||
|
RESULT( 1+RSUB ) = ULPINV
|
||
|
WRITE( NOUNIT, FMT = 9992 )'SGEES1', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
GO TO 220
|
||
|
END IF
|
||
|
*
|
||
|
* Do Test (1) or Test (7)
|
||
|
*
|
||
|
RESULT( 1+RSUB ) = ZERO
|
||
|
DO 120 J = 1, N - 2
|
||
|
DO 110 I = J + 2, N
|
||
|
IF( H( I, J ).NE.ZERO )
|
||
|
$ RESULT( 1+RSUB ) = ULPINV
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
DO 130 I = 1, N - 2
|
||
|
IF( H( I+1, I ).NE.ZERO .AND. H( I+2, I+1 ).NE.
|
||
|
$ ZERO )RESULT( 1+RSUB ) = ULPINV
|
||
|
130 CONTINUE
|
||
|
DO 140 I = 1, N - 1
|
||
|
IF( H( I+1, I ).NE.ZERO ) THEN
|
||
|
IF( H( I, I ).NE.H( I+1, I+1 ) .OR.
|
||
|
$ H( I, I+1 ).EQ.ZERO .OR.
|
||
|
$ SIGN( ONE, H( I+1, I ) ).EQ.
|
||
|
$ SIGN( ONE, H( I, I+1 ) ) )RESULT( 1+RSUB )
|
||
|
$ = ULPINV
|
||
|
END IF
|
||
|
140 CONTINUE
|
||
|
*
|
||
|
* Do Tests (2) and (3) or Tests (8) and (9)
|
||
|
*
|
||
|
LWORK = MAX( 1, 2*N*N )
|
||
|
CALL SHST01( N, 1, N, A, LDA, H, LDA, VS, LDVS, WORK,
|
||
|
$ LWORK, RES )
|
||
|
RESULT( 2+RSUB ) = RES( 1 )
|
||
|
RESULT( 3+RSUB ) = RES( 2 )
|
||
|
*
|
||
|
* Do Test (4) or Test (10)
|
||
|
*
|
||
|
RESULT( 4+RSUB ) = ZERO
|
||
|
DO 150 I = 1, N
|
||
|
IF( H( I, I ).NE.WR( I ) )
|
||
|
$ RESULT( 4+RSUB ) = ULPINV
|
||
|
150 CONTINUE
|
||
|
IF( N.GT.1 ) THEN
|
||
|
IF( H( 2, 1 ).EQ.ZERO .AND. WI( 1 ).NE.ZERO )
|
||
|
$ RESULT( 4+RSUB ) = ULPINV
|
||
|
IF( H( N, N-1 ).EQ.ZERO .AND. WI( N ).NE.ZERO )
|
||
|
$ RESULT( 4+RSUB ) = ULPINV
|
||
|
END IF
|
||
|
DO 160 I = 1, N - 1
|
||
|
IF( H( I+1, I ).NE.ZERO ) THEN
|
||
|
TMP = SQRT( ABS( H( I+1, I ) ) )*
|
||
|
$ SQRT( ABS( H( I, I+1 ) ) )
|
||
|
RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
|
||
|
$ ABS( WI( I )-TMP ) /
|
||
|
$ MAX( ULP*TMP, UNFL ) )
|
||
|
RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
|
||
|
$ ABS( WI( I+1 )+TMP ) /
|
||
|
$ MAX( ULP*TMP, UNFL ) )
|
||
|
ELSE IF( I.GT.1 ) THEN
|
||
|
IF( H( I+1, I ).EQ.ZERO .AND. H( I, I-1 ).EQ.
|
||
|
$ ZERO .AND. WI( I ).NE.ZERO )RESULT( 4+RSUB )
|
||
|
$ = ULPINV
|
||
|
END IF
|
||
|
160 CONTINUE
|
||
|
*
|
||
|
* Do Test (5) or Test (11)
|
||
|
*
|
||
|
CALL SLACPY( 'F', N, N, A, LDA, HT, LDA )
|
||
|
CALL SGEES( 'N', SORT, SSLECT, N, HT, LDA, SDIM, WRT,
|
||
|
$ WIT, VS, LDVS, WORK, NNWORK, BWORK,
|
||
|
$ IINFO )
|
||
|
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
|
||
|
RESULT( 5+RSUB ) = ULPINV
|
||
|
WRITE( NOUNIT, FMT = 9992 )'SGEES2', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
GO TO 220
|
||
|
END IF
|
||
|
*
|
||
|
RESULT( 5+RSUB ) = ZERO
|
||
|
DO 180 J = 1, N
|
||
|
DO 170 I = 1, N
|
||
|
IF( H( I, J ).NE.HT( I, J ) )
|
||
|
$ RESULT( 5+RSUB ) = ULPINV
|
||
|
170 CONTINUE
|
||
|
180 CONTINUE
|
||
|
*
|
||
|
* Do Test (6) or Test (12)
|
||
|
*
|
||
|
RESULT( 6+RSUB ) = ZERO
|
||
|
DO 190 I = 1, N
|
||
|
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
|
||
|
$ RESULT( 6+RSUB ) = ULPINV
|
||
|
190 CONTINUE
|
||
|
*
|
||
|
* Do Test (13)
|
||
|
*
|
||
|
IF( ISORT.EQ.1 ) THEN
|
||
|
RESULT( 13 ) = ZERO
|
||
|
KNTEIG = 0
|
||
|
DO 200 I = 1, N
|
||
|
IF( SSLECT( WR( I ), WI( I ) ) .OR.
|
||
|
$ SSLECT( WR( I ), -WI( I ) ) )
|
||
|
$ KNTEIG = KNTEIG + 1
|
||
|
IF( I.LT.N ) THEN
|
||
|
IF( ( SSLECT( WR( I+1 ),
|
||
|
$ WI( I+1 ) ) .OR. SSLECT( WR( I+1 ),
|
||
|
$ -WI( I+1 ) ) ) .AND.
|
||
|
$ ( .NOT.( SSLECT( WR( I ),
|
||
|
$ WI( I ) ) .OR. SSLECT( WR( I ),
|
||
|
$ -WI( I ) ) ) ) .AND. IINFO.NE.N+2 )
|
||
|
$ RESULT( 13 ) = ULPINV
|
||
|
END IF
|
||
|
200 CONTINUE
|
||
|
IF( SDIM.NE.KNTEIG ) THEN
|
||
|
RESULT( 13 ) = ULPINV
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
210 CONTINUE
|
||
|
*
|
||
|
* End of Loop -- Check for RESULT(j) > THRESH
|
||
|
*
|
||
|
220 CONTINUE
|
||
|
*
|
||
|
NTEST = 0
|
||
|
NFAIL = 0
|
||
|
DO 230 J = 1, 13
|
||
|
IF( RESULT( J ).GE.ZERO )
|
||
|
$ NTEST = NTEST + 1
|
||
|
IF( RESULT( J ).GE.THRESH )
|
||
|
$ NFAIL = NFAIL + 1
|
||
|
230 CONTINUE
|
||
|
*
|
||
|
IF( NFAIL.GT.0 )
|
||
|
$ NTESTF = NTESTF + 1
|
||
|
IF( NTESTF.EQ.1 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9999 )PATH
|
||
|
WRITE( NOUNIT, FMT = 9998 )
|
||
|
WRITE( NOUNIT, FMT = 9997 )
|
||
|
WRITE( NOUNIT, FMT = 9996 )
|
||
|
WRITE( NOUNIT, FMT = 9995 )THRESH
|
||
|
WRITE( NOUNIT, FMT = 9994 )
|
||
|
NTESTF = 2
|
||
|
END IF
|
||
|
*
|
||
|
DO 240 J = 1, 13
|
||
|
IF( RESULT( J ).GE.THRESH ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE,
|
||
|
$ J, RESULT( J )
|
||
|
END IF
|
||
|
240 CONTINUE
|
||
|
*
|
||
|
NERRS = NERRS + NFAIL
|
||
|
NTESTT = NTESTT + NTEST
|
||
|
*
|
||
|
250 CONTINUE
|
||
|
260 CONTINUE
|
||
|
270 CONTINUE
|
||
|
*
|
||
|
* Summary
|
||
|
*
|
||
|
CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT )
|
||
|
*
|
||
|
9999 FORMAT( / 1X, A3, ' -- Real Schur Form Decomposition Driver',
|
||
|
$ / ' Matrix types (see SDRVES for details): ' )
|
||
|
*
|
||
|
9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
|
||
|
$ ' ', ' 5=Diagonal: geometr. spaced entries.',
|
||
|
$ / ' 2=Identity matrix. ', ' 6=Diagona',
|
||
|
$ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
|
||
|
$ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
|
||
|
$ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
|
||
|
$ 'mall, evenly spaced.' )
|
||
|
9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
|
||
|
$ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
|
||
|
$ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
|
||
|
$ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
|
||
|
$ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
|
||
|
$ 'lex ', / ' 12=Well-cond., random complex ', 6X, ' ',
|
||
|
$ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
|
||
|
$ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
|
||
|
$ ' complx ' )
|
||
|
9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
|
||
|
$ 'with small random entries.', / ' 20=Matrix with large ran',
|
||
|
$ 'dom entries. ', / )
|
||
|
9995 FORMAT( ' Tests performed with test threshold =', F8.2,
|
||
|
$ / ' ( A denotes A on input and T denotes A on output)',
|
||
|
$ / / ' 1 = 0 if T in Schur form (no sort), ',
|
||
|
$ ' 1/ulp otherwise', /
|
||
|
$ ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
|
||
|
$ / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ', /
|
||
|
$ ' 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort),',
|
||
|
$ ' 1/ulp otherwise', /
|
||
|
$ ' 5 = 0 if T same no matter if VS computed (no sort),',
|
||
|
$ ' 1/ulp otherwise', /
|
||
|
$ ' 6 = 0 if WR, WI same no matter if VS computed (no sort)',
|
||
|
$ ', 1/ulp otherwise' )
|
||
|
9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', ' 1/ulp otherwise',
|
||
|
$ / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
|
||
|
$ / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
|
||
|
$ / ' 10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort),',
|
||
|
$ ' 1/ulp otherwise', /
|
||
|
$ ' 11 = 0 if T same no matter if VS computed (sort),',
|
||
|
$ ' 1/ulp otherwise', /
|
||
|
$ ' 12 = 0 if WR, WI same no matter if VS computed (sort),',
|
||
|
$ ' 1/ulp otherwise', /
|
||
|
$ ' 13 = 0 if sorting successful, 1/ulp otherwise', / )
|
||
|
9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
|
||
|
$ ' type ', I2, ', test(', I2, ')=', G10.3 )
|
||
|
9992 FORMAT( ' SDRVES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
|
||
|
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SDRVES
|
||
|
*
|
||
|
END
|