You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
892 lines
31 KiB
892 lines
31 KiB
2 years ago
|
*> \brief \b ZCHKHB2STG
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
|
||
|
* ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
|
||
|
* D2, D3, U, LDU, WORK, LWORK, RWORK RESULT,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
|
||
|
* $ NWDTHS
|
||
|
* DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL DOTYPE( * )
|
||
|
* INTEGER ISEED( 4 ), KK( * ), NN( * )
|
||
|
* DOUBLE PRECISION RESULT( * ), RWORK( * ), SD( * ), SE( * ),
|
||
|
* $ D1( * ), D2( * ), D3( * )
|
||
|
* COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZCHKHB2STG tests the reduction of a Hermitian band matrix to tridiagonal
|
||
|
*> from, used with the Hermitian eigenvalue problem.
|
||
|
*>
|
||
|
*> ZHBTRD factors a Hermitian band matrix A as U S U* , where * means
|
||
|
*> conjugate transpose, S is symmetric tridiagonal, and U is unitary.
|
||
|
*> ZHBTRD can use either just the lower or just the upper triangle
|
||
|
*> of A; ZCHKHB2STG checks both cases.
|
||
|
*>
|
||
|
*> ZHETRD_HB2ST factors a Hermitian band matrix A as U S U* ,
|
||
|
*> where * means conjugate transpose, S is symmetric tridiagonal, and U is
|
||
|
*> unitary. ZHETRD_HB2ST can use either just the lower or just
|
||
|
*> the upper triangle of A; ZCHKHB2STG checks both cases.
|
||
|
*>
|
||
|
*> DSTEQR factors S as Z D1 Z'.
|
||
|
*> D1 is the matrix of eigenvalues computed when Z is not computed
|
||
|
*> and from the S resulting of DSBTRD "U" (used as reference for DSYTRD_SB2ST)
|
||
|
*> D2 is the matrix of eigenvalues computed when Z is not computed
|
||
|
*> and from the S resulting of DSYTRD_SB2ST "U".
|
||
|
*> D3 is the matrix of eigenvalues computed when Z is not computed
|
||
|
*> and from the S resulting of DSYTRD_SB2ST "L".
|
||
|
*>
|
||
|
*> When ZCHKHB2STG is called, a number of matrix "sizes" ("n's"), a number
|
||
|
*> of bandwidths ("k's"), and a number of matrix "types" are
|
||
|
*> specified. For each size ("n"), each bandwidth ("k") less than or
|
||
|
*> equal to "n", and each type of matrix, one matrix will be generated
|
||
|
*> and used to test the hermitian banded reduction routine. For each
|
||
|
*> matrix, a number of tests will be performed:
|
||
|
*>
|
||
|
*> (1) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with
|
||
|
*> UPLO='U'
|
||
|
*>
|
||
|
*> (2) | I - UU* | / ( n ulp )
|
||
|
*>
|
||
|
*> (3) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with
|
||
|
*> UPLO='L'
|
||
|
*>
|
||
|
*> (4) | I - UU* | / ( n ulp )
|
||
|
*>
|
||
|
*> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by
|
||
|
*> DSBTRD with UPLO='U' and
|
||
|
*> D2 is computed by
|
||
|
*> ZHETRD_HB2ST with UPLO='U'
|
||
|
*>
|
||
|
*> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by
|
||
|
*> DSBTRD with UPLO='U' and
|
||
|
*> D3 is computed by
|
||
|
*> ZHETRD_HB2ST with UPLO='L'
|
||
|
*>
|
||
|
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
|
||
|
*> each element NN(j) specifies one size.
|
||
|
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
|
||
|
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
|
||
|
*> Currently, the list of possible types is:
|
||
|
*>
|
||
|
*> (1) The zero matrix.
|
||
|
*> (2) The identity matrix.
|
||
|
*>
|
||
|
*> (3) A diagonal matrix with evenly spaced entries
|
||
|
*> 1, ..., ULP and random signs.
|
||
|
*> (ULP = (first number larger than 1) - 1 )
|
||
|
*> (4) A diagonal matrix with geometrically spaced entries
|
||
|
*> 1, ..., ULP and random signs.
|
||
|
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
|
||
|
*> and random signs.
|
||
|
*>
|
||
|
*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
|
||
|
*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
|
||
|
*>
|
||
|
*> (8) A matrix of the form U* D U, where U is unitary and
|
||
|
*> D has evenly spaced entries 1, ..., ULP with random signs
|
||
|
*> on the diagonal.
|
||
|
*>
|
||
|
*> (9) A matrix of the form U* D U, where U is unitary and
|
||
|
*> D has geometrically spaced entries 1, ..., ULP with random
|
||
|
*> signs on the diagonal.
|
||
|
*>
|
||
|
*> (10) A matrix of the form U* D U, where U is unitary and
|
||
|
*> D has "clustered" entries 1, ULP,..., ULP with random
|
||
|
*> signs on the diagonal.
|
||
|
*>
|
||
|
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
|
||
|
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
|
||
|
*>
|
||
|
*> (13) Hermitian matrix with random entries chosen from (-1,1).
|
||
|
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
|
||
|
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] NSIZES
|
||
|
*> \verbatim
|
||
|
*> NSIZES is INTEGER
|
||
|
*> The number of sizes of matrices to use. If it is zero,
|
||
|
*> ZCHKHB2STG does nothing. It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NN
|
||
|
*> \verbatim
|
||
|
*> NN is INTEGER array, dimension (NSIZES)
|
||
|
*> An array containing the sizes to be used for the matrices.
|
||
|
*> Zero values will be skipped. The values must be at least
|
||
|
*> zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NWDTHS
|
||
|
*> \verbatim
|
||
|
*> NWDTHS is INTEGER
|
||
|
*> The number of bandwidths to use. If it is zero,
|
||
|
*> ZCHKHB2STG does nothing. It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KK
|
||
|
*> \verbatim
|
||
|
*> KK is INTEGER array, dimension (NWDTHS)
|
||
|
*> An array containing the bandwidths to be used for the band
|
||
|
*> matrices. The values must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NTYPES
|
||
|
*> \verbatim
|
||
|
*> NTYPES is INTEGER
|
||
|
*> The number of elements in DOTYPE. If it is zero, ZCHKHB2STG
|
||
|
*> does nothing. It must be at least zero. If it is MAXTYP+1
|
||
|
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
|
||
|
*> defined, which is to use whatever matrix is in A. This
|
||
|
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
|
||
|
*> DOTYPE(MAXTYP+1) is .TRUE. .
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DOTYPE
|
||
|
*> \verbatim
|
||
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
||
|
*> If DOTYPE(j) is .TRUE., then for each size in NN a
|
||
|
*> matrix of that size and of type j will be generated.
|
||
|
*> If NTYPES is smaller than the maximum number of types
|
||
|
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
|
||
|
*> MAXTYP will not be generated. If NTYPES is larger
|
||
|
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
|
||
|
*> will be ignored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> On entry ISEED specifies the seed of the random number
|
||
|
*> generator. The array elements should be between 0 and 4095;
|
||
|
*> if not they will be reduced mod 4096. Also, ISEED(4) must
|
||
|
*> be odd. The random number generator uses a linear
|
||
|
*> congruential sequence limited to small integers, and so
|
||
|
*> should produce machine independent random numbers. The
|
||
|
*> values of ISEED are changed on exit, and can be used in the
|
||
|
*> next call to ZCHKHB2STG to continue the same random number
|
||
|
*> sequence.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] THRESH
|
||
|
*> \verbatim
|
||
|
*> THRESH is DOUBLE PRECISION
|
||
|
*> A test will count as "failed" if the "error", computed as
|
||
|
*> described above, exceeds THRESH. Note that the error
|
||
|
*> is scaled to be O(1), so THRESH should be a reasonably
|
||
|
*> small multiple of 1, e.g., 10 or 100. In particular,
|
||
|
*> it should not depend on the precision (single vs. double)
|
||
|
*> or the size of the matrix. It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NOUNIT
|
||
|
*> \verbatim
|
||
|
*> NOUNIT is INTEGER
|
||
|
*> The FORTRAN unit number for printing out error messages
|
||
|
*> (e.g., if a routine returns IINFO not equal to 0.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension
|
||
|
*> (LDA, max(NN))
|
||
|
*> Used to hold the matrix whose eigenvalues are to be
|
||
|
*> computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A. It must be at least 2 (not 1!)
|
||
|
*> and at least max( KK )+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SD
|
||
|
*> \verbatim
|
||
|
*> SD is DOUBLE PRECISION array, dimension (max(NN))
|
||
|
*> Used to hold the diagonal of the tridiagonal matrix computed
|
||
|
*> by ZHBTRD.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SE
|
||
|
*> \verbatim
|
||
|
*> SE is DOUBLE PRECISION array, dimension (max(NN))
|
||
|
*> Used to hold the off-diagonal of the tridiagonal matrix
|
||
|
*> computed by ZHBTRD.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] D1
|
||
|
*> \verbatim
|
||
|
*> D1 is DOUBLE PRECISION array, dimension (max(NN))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] D2
|
||
|
*> \verbatim
|
||
|
*> D2 is DOUBLE PRECISION array, dimension (max(NN))
|
||
|
*> \endverbatim
|
||
|
*>*> \param[out] D3
|
||
|
*> \verbatim
|
||
|
*> D3 is DOUBLE PRECISION array, dimension (max(NN))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] U
|
||
|
*> \verbatim
|
||
|
*> U is COMPLEX*16 array, dimension (LDU, max(NN))
|
||
|
*> Used to hold the unitary matrix computed by ZHBTRD.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of U. It must be at least 1
|
||
|
*> and at least max( NN ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The number of entries in WORK. This must be at least
|
||
|
*> max( LDA+1, max(NN)+1 )*max(NN).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is DOUBLE PRECISION array, dimension (4)
|
||
|
*> The values computed by the tests described above.
|
||
|
*> The values are currently limited to 1/ulp, to avoid
|
||
|
*> overflow.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> If 0, then everything ran OK.
|
||
|
*>
|
||
|
*>-----------------------------------------------------------------------
|
||
|
*>
|
||
|
*> Some Local Variables and Parameters:
|
||
|
*> ---- ----- --------- --- ----------
|
||
|
*> ZERO, ONE Real 0 and 1.
|
||
|
*> MAXTYP The number of types defined.
|
||
|
*> NTEST The number of tests performed, or which can
|
||
|
*> be performed so far, for the current matrix.
|
||
|
*> NTESTT The total number of tests performed so far.
|
||
|
*> NMAX Largest value in NN.
|
||
|
*> NMATS The number of matrices generated so far.
|
||
|
*> NERRS The number of tests which have exceeded THRESH
|
||
|
*> so far.
|
||
|
*> COND, IMODE Values to be passed to the matrix generators.
|
||
|
*> ANORM Norm of A; passed to matrix generators.
|
||
|
*>
|
||
|
*> OVFL, UNFL Overflow and underflow thresholds.
|
||
|
*> ULP, ULPINV Finest relative precision and its inverse.
|
||
|
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
|
||
|
*> The following four arrays decode JTYPE:
|
||
|
*> KTYPE(j) The general type (1-10) for type "j".
|
||
|
*> KMODE(j) The MODE value to be passed to the matrix
|
||
|
*> generator for type "j".
|
||
|
*> KMAGN(j) The order of magnitude ( O(1),
|
||
|
*> O(overflow^(1/2) ), O(underflow^(1/2) )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
|
||
|
$ ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
|
||
|
$ D2, D3, U, LDU, WORK, LWORK, RWORK, RESULT,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
|
||
|
$ NWDTHS
|
||
|
DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL DOTYPE( * )
|
||
|
INTEGER ISEED( 4 ), KK( * ), NN( * )
|
||
|
DOUBLE PRECISION RESULT( * ), RWORK( * ), SD( * ), SE( * ),
|
||
|
$ D1( * ), D2( * ), D3( * )
|
||
|
COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX*16 CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
||
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
DOUBLE PRECISION ZERO, ONE, TWO, TEN
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
|
||
|
$ TEN = 10.0D+0 )
|
||
|
DOUBLE PRECISION HALF
|
||
|
PARAMETER ( HALF = ONE / TWO )
|
||
|
INTEGER MAXTYP
|
||
|
PARAMETER ( MAXTYP = 15 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL BADNN, BADNNB
|
||
|
INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
|
||
|
$ JTYPE, JWIDTH, K, KMAX, LH, LW, MTYPES, N,
|
||
|
$ NERRS, NMATS, NMAX, NTEST, NTESTT
|
||
|
DOUBLE PRECISION ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
|
||
|
$ TEMP1, TEMP2, TEMP3, TEMP4, ULP, ULPINV, UNFL
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
|
||
|
$ KMODE( MAXTYP ), KTYPE( MAXTYP )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLASUM, XERBLA, ZHBT21, ZHBTRD, ZLACPY, ZLASET,
|
||
|
$ ZLATMR, ZLATMS, ZHETRD_HB2ST, ZSTEQR
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DCONJG, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
|
||
|
DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
|
||
|
$ 2, 3 /
|
||
|
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
|
||
|
$ 0, 0 /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Check for errors
|
||
|
*
|
||
|
NTESTT = 0
|
||
|
INFO = 0
|
||
|
*
|
||
|
* Important constants
|
||
|
*
|
||
|
BADNN = .FALSE.
|
||
|
NMAX = 1
|
||
|
DO 10 J = 1, NSIZES
|
||
|
NMAX = MAX( NMAX, NN( J ) )
|
||
|
IF( NN( J ).LT.0 )
|
||
|
$ BADNN = .TRUE.
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
BADNNB = .FALSE.
|
||
|
KMAX = 0
|
||
|
DO 20 J = 1, NSIZES
|
||
|
KMAX = MAX( KMAX, KK( J ) )
|
||
|
IF( KK( J ).LT.0 )
|
||
|
$ BADNNB = .TRUE.
|
||
|
20 CONTINUE
|
||
|
KMAX = MIN( NMAX-1, KMAX )
|
||
|
*
|
||
|
* Check for errors
|
||
|
*
|
||
|
IF( NSIZES.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( BADNN ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( NWDTHS.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( BADNNB ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( NTYPES.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDA.LT.KMAX+1 ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF( LDU.LT.NMAX ) THEN
|
||
|
INFO = -15
|
||
|
ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
|
||
|
INFO = -17
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZCHKHB2STG', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* More Important constants
|
||
|
*
|
||
|
UNFL = DLAMCH( 'Safe minimum' )
|
||
|
OVFL = ONE / UNFL
|
||
|
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
|
||
|
ULPINV = ONE / ULP
|
||
|
RTUNFL = SQRT( UNFL )
|
||
|
RTOVFL = SQRT( OVFL )
|
||
|
*
|
||
|
* Loop over sizes, types
|
||
|
*
|
||
|
NERRS = 0
|
||
|
NMATS = 0
|
||
|
*
|
||
|
DO 190 JSIZE = 1, NSIZES
|
||
|
N = NN( JSIZE )
|
||
|
ANINV = ONE / DBLE( MAX( 1, N ) )
|
||
|
*
|
||
|
DO 180 JWIDTH = 1, NWDTHS
|
||
|
K = KK( JWIDTH )
|
||
|
IF( K.GT.N )
|
||
|
$ GO TO 180
|
||
|
K = MAX( 0, MIN( N-1, K ) )
|
||
|
*
|
||
|
IF( NSIZES.NE.1 ) THEN
|
||
|
MTYPES = MIN( MAXTYP, NTYPES )
|
||
|
ELSE
|
||
|
MTYPES = MIN( MAXTYP+1, NTYPES )
|
||
|
END IF
|
||
|
*
|
||
|
DO 170 JTYPE = 1, MTYPES
|
||
|
IF( .NOT.DOTYPE( JTYPE ) )
|
||
|
$ GO TO 170
|
||
|
NMATS = NMATS + 1
|
||
|
NTEST = 0
|
||
|
*
|
||
|
DO 30 J = 1, 4
|
||
|
IOLDSD( J ) = ISEED( J )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Compute "A".
|
||
|
* Store as "Upper"; later, we will copy to other format.
|
||
|
*
|
||
|
* Control parameters:
|
||
|
*
|
||
|
* KMAGN KMODE KTYPE
|
||
|
* =1 O(1) clustered 1 zero
|
||
|
* =2 large clustered 2 identity
|
||
|
* =3 small exponential (none)
|
||
|
* =4 arithmetic diagonal, (w/ eigenvalues)
|
||
|
* =5 random log hermitian, w/ eigenvalues
|
||
|
* =6 random (none)
|
||
|
* =7 random diagonal
|
||
|
* =8 random hermitian
|
||
|
* =9 positive definite
|
||
|
* =10 diagonally dominant tridiagonal
|
||
|
*
|
||
|
IF( MTYPES.GT.MAXTYP )
|
||
|
$ GO TO 100
|
||
|
*
|
||
|
ITYPE = KTYPE( JTYPE )
|
||
|
IMODE = KMODE( JTYPE )
|
||
|
*
|
||
|
* Compute norm
|
||
|
*
|
||
|
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
|
||
|
*
|
||
|
40 CONTINUE
|
||
|
ANORM = ONE
|
||
|
GO TO 70
|
||
|
*
|
||
|
50 CONTINUE
|
||
|
ANORM = ( RTOVFL*ULP )*ANINV
|
||
|
GO TO 70
|
||
|
*
|
||
|
60 CONTINUE
|
||
|
ANORM = RTUNFL*N*ULPINV
|
||
|
GO TO 70
|
||
|
*
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
|
||
|
IINFO = 0
|
||
|
IF( JTYPE.LE.15 ) THEN
|
||
|
COND = ULPINV
|
||
|
ELSE
|
||
|
COND = ULPINV*ANINV / TEN
|
||
|
END IF
|
||
|
*
|
||
|
* Special Matrices -- Identity & Jordan block
|
||
|
*
|
||
|
* Zero
|
||
|
*
|
||
|
IF( ITYPE.EQ.1 ) THEN
|
||
|
IINFO = 0
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.2 ) THEN
|
||
|
*
|
||
|
* Identity
|
||
|
*
|
||
|
DO 80 JCOL = 1, N
|
||
|
A( K+1, JCOL ) = ANORM
|
||
|
80 CONTINUE
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.4 ) THEN
|
||
|
*
|
||
|
* Diagonal Matrix, [Eigen]values Specified
|
||
|
*
|
||
|
CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE,
|
||
|
$ COND, ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
|
||
|
$ WORK, IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.5 ) THEN
|
||
|
*
|
||
|
* Hermitian, eigenvalues specified
|
||
|
*
|
||
|
CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE,
|
||
|
$ COND, ANORM, K, K, 'Q', A, LDA, WORK,
|
||
|
$ IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.7 ) THEN
|
||
|
*
|
||
|
* Diagonal, random eigenvalues
|
||
|
*
|
||
|
CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE,
|
||
|
$ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
|
||
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
|
||
|
$ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
|
||
|
$ IDUMMA, IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.8 ) THEN
|
||
|
*
|
||
|
* Hermitian, random eigenvalues
|
||
|
*
|
||
|
CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE,
|
||
|
$ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
|
||
|
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
|
||
|
$ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.9 ) THEN
|
||
|
*
|
||
|
* Positive definite, eigenvalues specified.
|
||
|
*
|
||
|
CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE,
|
||
|
$ COND, ANORM, K, K, 'Q', A, LDA,
|
||
|
$ WORK( N+1 ), IINFO )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.10 ) THEN
|
||
|
*
|
||
|
* Positive definite tridiagonal, eigenvalues specified.
|
||
|
*
|
||
|
IF( N.GT.1 )
|
||
|
$ K = MAX( 1, K )
|
||
|
CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE,
|
||
|
$ COND, ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
|
||
|
$ WORK, IINFO )
|
||
|
DO 90 I = 2, N
|
||
|
TEMP1 = ABS( A( K, I ) ) /
|
||
|
$ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
|
||
|
IF( TEMP1.GT.HALF ) THEN
|
||
|
A( K, I ) = HALF*SQRT( ABS( A( K+1,
|
||
|
$ I-1 )*A( K+1, I ) ) )
|
||
|
END IF
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
IINFO = 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
* Call ZHBTRD to compute S and U from upper triangle.
|
||
|
*
|
||
|
CALL ZLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
|
||
|
*
|
||
|
NTEST = 1
|
||
|
CALL ZHBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
|
||
|
$ WORK( LDA*N+1 ), IINFO )
|
||
|
*
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9999 )'ZHBTRD(U)', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
IF( IINFO.LT.0 ) THEN
|
||
|
RETURN
|
||
|
ELSE
|
||
|
RESULT( 1 ) = ULPINV
|
||
|
GO TO 150
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Do tests 1 and 2
|
||
|
*
|
||
|
CALL ZHBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
|
||
|
$ WORK, RWORK, RESULT( 1 ) )
|
||
|
*
|
||
|
* Before converting A into lower for DSBTRD, run DSYTRD_SB2ST
|
||
|
* otherwise matrix A will be converted to lower and then need
|
||
|
* to be converted back to upper in order to run the upper case
|
||
|
* ofDSYTRD_SB2ST
|
||
|
*
|
||
|
* Compute D1 the eigenvalues resulting from the tridiagonal
|
||
|
* form using the DSBTRD and used as reference to compare
|
||
|
* with the DSYTRD_SB2ST routine
|
||
|
*
|
||
|
* Compute D1 from the DSBTRD and used as reference for the
|
||
|
* DSYTRD_SB2ST
|
||
|
*
|
||
|
CALL DCOPY( N, SD, 1, D1, 1 )
|
||
|
IF( N.GT.0 )
|
||
|
$ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
|
||
|
*
|
||
|
CALL ZSTEQR( 'N', N, D1, RWORK, WORK, LDU,
|
||
|
$ RWORK( N+1 ), IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
IF( IINFO.LT.0 ) THEN
|
||
|
RETURN
|
||
|
ELSE
|
||
|
RESULT( 5 ) = ULPINV
|
||
|
GO TO 150
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* DSYTRD_SB2ST Upper case is used to compute D2.
|
||
|
* Note to set SD and SE to zero to be sure not reusing
|
||
|
* the one from above. Compare it with D1 computed
|
||
|
* using the DSBTRD.
|
||
|
*
|
||
|
CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
|
||
|
CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
|
||
|
CALL ZLACPY( ' ', K+1, N, A, LDA, U, LDU )
|
||
|
LH = MAX(1, 4*N)
|
||
|
LW = LWORK - LH
|
||
|
CALL ZHETRD_HB2ST( 'N', 'N', "U", N, K, U, LDU, SD, SE,
|
||
|
$ WORK, LH, WORK( LH+1 ), LW, IINFO )
|
||
|
*
|
||
|
* Compute D2 from the DSYTRD_SB2ST Upper case
|
||
|
*
|
||
|
CALL DCOPY( N, SD, 1, D2, 1 )
|
||
|
IF( N.GT.0 )
|
||
|
$ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
|
||
|
*
|
||
|
CALL ZSTEQR( 'N', N, D2, RWORK, WORK, LDU,
|
||
|
$ RWORK( N+1 ), IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
IF( IINFO.LT.0 ) THEN
|
||
|
RETURN
|
||
|
ELSE
|
||
|
RESULT( 5 ) = ULPINV
|
||
|
GO TO 150
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Convert A from Upper-Triangle-Only storage to
|
||
|
* Lower-Triangle-Only storage.
|
||
|
*
|
||
|
DO 120 JC = 1, N
|
||
|
DO 110 JR = 0, MIN( K, N-JC )
|
||
|
A( JR+1, JC ) = DCONJG( A( K+1-JR, JC+JR ) )
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
DO 140 JC = N + 1 - K, N
|
||
|
DO 130 JR = MIN( K, N-JC ) + 1, K
|
||
|
A( JR+1, JC ) = ZERO
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
*
|
||
|
* Call ZHBTRD to compute S and U from lower triangle
|
||
|
*
|
||
|
CALL ZLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
|
||
|
*
|
||
|
NTEST = 3
|
||
|
CALL ZHBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
|
||
|
$ WORK( LDA*N+1 ), IINFO )
|
||
|
*
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9999 )'ZHBTRD(L)', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
IF( IINFO.LT.0 ) THEN
|
||
|
RETURN
|
||
|
ELSE
|
||
|
RESULT( 3 ) = ULPINV
|
||
|
GO TO 150
|
||
|
END IF
|
||
|
END IF
|
||
|
NTEST = 4
|
||
|
*
|
||
|
* Do tests 3 and 4
|
||
|
*
|
||
|
CALL ZHBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
|
||
|
$ WORK, RWORK, RESULT( 3 ) )
|
||
|
*
|
||
|
* DSYTRD_SB2ST Lower case is used to compute D3.
|
||
|
* Note to set SD and SE to zero to be sure not reusing
|
||
|
* the one from above. Compare it with D1 computed
|
||
|
* using the DSBTRD.
|
||
|
*
|
||
|
CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
|
||
|
CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
|
||
|
CALL ZLACPY( ' ', K+1, N, A, LDA, U, LDU )
|
||
|
LH = MAX(1, 4*N)
|
||
|
LW = LWORK - LH
|
||
|
CALL ZHETRD_HB2ST( 'N', 'N', "L", N, K, U, LDU, SD, SE,
|
||
|
$ WORK, LH, WORK( LH+1 ), LW, IINFO )
|
||
|
*
|
||
|
* Compute D3 from the 2-stage Upper case
|
||
|
*
|
||
|
CALL DCOPY( N, SD, 1, D3, 1 )
|
||
|
IF( N.GT.0 )
|
||
|
$ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
|
||
|
*
|
||
|
CALL ZSTEQR( 'N', N, D3, RWORK, WORK, LDU,
|
||
|
$ RWORK( N+1 ), IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N,
|
||
|
$ JTYPE, IOLDSD
|
||
|
INFO = ABS( IINFO )
|
||
|
IF( IINFO.LT.0 ) THEN
|
||
|
RETURN
|
||
|
ELSE
|
||
|
RESULT( 6 ) = ULPINV
|
||
|
GO TO 150
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
*
|
||
|
* Do Tests 3 and 4 which are similar to 11 and 12 but with the
|
||
|
* D1 computed using the standard 1-stage reduction as reference
|
||
|
*
|
||
|
NTEST = 6
|
||
|
TEMP1 = ZERO
|
||
|
TEMP2 = ZERO
|
||
|
TEMP3 = ZERO
|
||
|
TEMP4 = ZERO
|
||
|
*
|
||
|
DO 151 J = 1, N
|
||
|
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
|
||
|
TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
|
||
|
TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
|
||
|
TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
|
||
|
151 CONTINUE
|
||
|
*
|
||
|
RESULT(5) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
|
||
|
RESULT(6) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
|
||
|
*
|
||
|
* End of Loop -- Check for RESULT(j) > THRESH
|
||
|
*
|
||
|
150 CONTINUE
|
||
|
NTESTT = NTESTT + NTEST
|
||
|
*
|
||
|
* Print out tests which fail.
|
||
|
*
|
||
|
DO 160 JR = 1, NTEST
|
||
|
IF( RESULT( JR ).GE.THRESH ) THEN
|
||
|
*
|
||
|
* If this is the first test to fail,
|
||
|
* print a header to the data file.
|
||
|
*
|
||
|
IF( NERRS.EQ.0 ) THEN
|
||
|
WRITE( NOUNIT, FMT = 9998 )'ZHB'
|
||
|
WRITE( NOUNIT, FMT = 9997 )
|
||
|
WRITE( NOUNIT, FMT = 9996 )
|
||
|
WRITE( NOUNIT, FMT = 9995 )'Hermitian'
|
||
|
WRITE( NOUNIT, FMT = 9994 )'unitary', '*',
|
||
|
$ 'conjugate transpose', ( '*', J = 1, 6 )
|
||
|
END IF
|
||
|
NERRS = NERRS + 1
|
||
|
WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
|
||
|
$ JR, RESULT( JR )
|
||
|
END IF
|
||
|
160 CONTINUE
|
||
|
*
|
||
|
170 CONTINUE
|
||
|
180 CONTINUE
|
||
|
190 CONTINUE
|
||
|
*
|
||
|
* Summary
|
||
|
*
|
||
|
CALL DLASUM( 'ZHB', NOUNIT, NERRS, NTESTT )
|
||
|
RETURN
|
||
|
*
|
||
|
9999 FORMAT( ' ZCHKHB2STG: ', A, ' returned INFO=', I6, '.', / 9X,
|
||
|
$ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
|
||
|
$ ')' )
|
||
|
9998 FORMAT( / 1X, A3,
|
||
|
$ ' -- Complex Hermitian Banded Tridiagonal Reduction Routines'
|
||
|
$ )
|
||
|
9997 FORMAT( ' Matrix types (see DCHK23 for details): ' )
|
||
|
*
|
||
|
9996 FORMAT( / ' Special Matrices:',
|
||
|
$ / ' 1=Zero matrix. ',
|
||
|
$ ' 5=Diagonal: clustered entries.',
|
||
|
$ / ' 2=Identity matrix. ',
|
||
|
$ ' 6=Diagonal: large, evenly spaced.',
|
||
|
$ / ' 3=Diagonal: evenly spaced entries. ',
|
||
|
$ ' 7=Diagonal: small, evenly spaced.',
|
||
|
$ / ' 4=Diagonal: geometr. spaced entries.' )
|
||
|
9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
|
||
|
$ / ' 8=Evenly spaced eigenvals. ',
|
||
|
$ ' 12=Small, evenly spaced eigenvals.',
|
||
|
$ / ' 9=Geometrically spaced eigenvals. ',
|
||
|
$ ' 13=Matrix with random O(1) entries.',
|
||
|
$ / ' 10=Clustered eigenvalues. ',
|
||
|
$ ' 14=Matrix with large random entries.',
|
||
|
$ / ' 11=Large, evenly spaced eigenvals. ',
|
||
|
$ ' 15=Matrix with small random entries.' )
|
||
|
*
|
||
|
9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
|
||
|
$ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
|
||
|
$ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
|
||
|
$ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
|
||
|
$ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
|
||
|
$ ' 4= | I - U U', A1, ' | / ( n ulp )' / ' Eig check:',
|
||
|
$ /' 5= | D1 - D2', '', ' | / ( |D1| ulp ) ',
|
||
|
$ ' 6= | D1 - D3', '', ' | / ( |D1| ulp ) ' )
|
||
|
9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
|
||
|
$ I2, ', test(', I2, ')=', G10.3 )
|
||
|
*
|
||
|
* End of ZCHKHB2STG
|
||
|
*
|
||
|
END
|