Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

559 lines
18 KiB

2 years ago
*> \brief \b ZCSDTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
* LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION RESULT( 15 ), RWORK( * ), THETA( * )
* COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
* $ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
* $ XF( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZCSDTS tests ZUNCSD, which, given an M-by-M partitioned unitary
*> matrix X,
*> Q M-Q
*> X = [ X11 X12 ] P ,
*> [ X21 X22 ] M-P
*>
*> computes the CSD
*>
*> [ U1 ]**T * [ X11 X12 ] * [ V1 ]
*> [ U2 ] [ X21 X22 ] [ V2 ]
*>
*> [ I 0 0 | 0 0 0 ]
*> [ 0 C 0 | 0 -S 0 ]
*> [ 0 0 0 | 0 0 -I ]
*> = [---------------------] = [ D11 D12 ] .
*> [ 0 0 0 | I 0 0 ] [ D21 D22 ]
*> [ 0 S 0 | 0 C 0 ]
*> [ 0 0 I | 0 0 0 ]
*>
*> and also SORCSD2BY1, which, given
*> Q
*> [ X11 ] P ,
*> [ X21 ] M-P
*>
*> computes the 2-by-1 CSD
*>
*> [ I 0 0 ]
*> [ 0 C 0 ]
*> [ 0 0 0 ]
*> [ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] ,
*> [ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ]
*> [ 0 S 0 ]
*> [ 0 0 I ]
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix X. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows of the matrix X11. P >= 0.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns of the matrix X11. Q >= 0.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (LDX,M)
*> The M-by-M matrix X.
*> \endverbatim
*>
*> \param[out] XF
*> \verbatim
*> XF is COMPLEX*16 array, dimension (LDX,M)
*> Details of the CSD of X, as returned by ZUNCSD;
*> see ZUNCSD for further details.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the arrays X and XF.
*> LDX >= max( 1,M ).
*> \endverbatim
*>
*> \param[out] U1
*> \verbatim
*> U1 is COMPLEX*16 array, dimension(LDU1,P)
*> The P-by-P unitary matrix U1.
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*> LDU1 is INTEGER
*> The leading dimension of the array U1. LDU >= max(1,P).
*> \endverbatim
*>
*> \param[out] U2
*> \verbatim
*> U2 is COMPLEX*16 array, dimension(LDU2,M-P)
*> The (M-P)-by-(M-P) unitary matrix U2.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of the array U2. LDU >= max(1,M-P).
*> \endverbatim
*>
*> \param[out] V1T
*> \verbatim
*> V1T is COMPLEX*16 array, dimension(LDV1T,Q)
*> The Q-by-Q unitary matrix V1T.
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*> LDV1T is INTEGER
*> The leading dimension of the array V1T. LDV1T >=
*> max(1,Q).
*> \endverbatim
*>
*> \param[out] V2T
*> \verbatim
*> V2T is COMPLEX*16 array, dimension(LDV2T,M-Q)
*> The (M-Q)-by-(M-Q) unitary matrix V2T.
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*> LDV2T is INTEGER
*> The leading dimension of the array V2T. LDV2T >=
*> max(1,M-Q).
*> \endverbatim
*>
*> \param[out] THETA
*> \verbatim
*> THETA is DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q)
*> The CS values of X; the essentially diagonal matrices C and
*> S are constructed from THETA; see subroutine ZUNCSD for
*> details.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (15)
*> The test ratios:
*> First, the 2-by-2 CSD:
*> RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
*> RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 )
*> RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
*> RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 )
*> RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
*> RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
*> RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
*> RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP )
*> RESULT(9) = 0 if THETA is in increasing order and
*> all angles are in [0,pi/2];
*> = ULPINV otherwise.
*> Then, the 2-by-1 CSD:
*> RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
*> RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
*> RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
*> RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
*> RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
*> RESULT(15) = 0 if THETA is in increasing order and
*> all angles are in [0,pi/2];
*> = ULPINV otherwise.
*> ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
$ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION RESULT( 15 ), RWORK( * ), THETA( * )
COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
$ XF( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION REALONE, REALZERO
PARAMETER ( REALONE = 1.0D0, REALZERO = 0.0D0 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = (0.0D0,0.0D0), ONE = (1.0D0,0.0D0) )
DOUBLE PRECISION PIOVER2
PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, R
DOUBLE PRECISION EPS2, RESID, ULP, ULPINV
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
EXTERNAL DLAMCH, ZLANGE, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNCSD,
$ ZUNCSD2BY1
* ..
* .. Intrinsic Functions ..
INTRINSIC COS, DBLE, DCMPLX, MAX, MIN, REAL, SIN
* ..
* .. Executable Statements ..
*
ULP = DLAMCH( 'Precision' )
ULPINV = REALONE / ULP
*
* The first half of the routine checks the 2-by-2 CSD
*
CALL ZLASET( 'Full', M, M, ZERO, ONE, WORK, LDX )
CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -REALONE,
$ X, LDX, REALONE, WORK, LDX )
IF (M.GT.0) THEN
EPS2 = MAX( ULP,
$ ZLANGE( '1', M, M, WORK, LDX, RWORK ) / DBLE( M ) )
ELSE
EPS2 = ULP
END IF
R = MIN( P, M-P, Q, M-Q )
*
* Copy the matrix X to the array XF.
*
CALL ZLACPY( 'Full', M, M, X, LDX, XF, LDX )
*
* Compute the CSD
*
CALL ZUNCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX,
$ XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX,
$ THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
$ WORK, LWORK, RWORK, 17*(R+2), IWORK, INFO )
*
* Compute XF := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22]
*
CALL ZLACPY( 'Full', M, M, X, LDX, XF, LDX )
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
$ XF, LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
$ U1, LDU1, WORK, LDX, ZERO, XF, LDX )
*
DO I = 1, MIN(P,Q)-R
XF(I,I) = XF(I,I) - ONE
END DO
DO I = 1, R
XF(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
$ XF(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - DCMPLX( COS(THETA(I)),
$ 0.0D0 )
END DO
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q,
$ ONE, XF(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P,
$ ONE, U1, LDU1, WORK, LDX, ZERO, XF(1,Q+1), LDX )
*
DO I = 1, MIN(P,M-Q)-R
XF(P-I+1,M-I+1) = XF(P-I+1,M-I+1) + ONE
END DO
DO I = 1, R
XF(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
$ XF(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) +
$ DCMPLX( SIN(THETA(R-I+1)), 0.0D0 )
END DO
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
$ XF(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
$ ONE, U2, LDU2, WORK, LDX, ZERO, XF(P+1,1), LDX )
*
DO I = 1, MIN(M-P,Q)-R
XF(M-I+1,Q-I+1) = XF(M-I+1,Q-I+1) - ONE
END DO
DO I = 1, R
XF(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
$ XF(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
$ DCMPLX( SIN(THETA(R-I+1)), 0.0D0 )
END DO
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q,
$ ONE, XF(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P,
$ ONE, U2, LDU2, WORK, LDX, ZERO, XF(P+1,Q+1), LDX )
*
DO I = 1, MIN(M-P,M-Q)-R
XF(P+I,Q+I) = XF(P+I,Q+I) - ONE
END DO
DO I = 1, R
XF(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
$ XF(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) -
$ DCMPLX( COS(THETA(I)), 0.0D0 )
END DO
*
* Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
*
RESID = ZLANGE( '1', P, Q, XF, LDX, RWORK )
RESULT( 1 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2
*
* Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) .
*
RESID = ZLANGE( '1', P, M-Q, XF(1,Q+1), LDX, RWORK )
RESULT( 2 ) = ( RESID / REAL(MAX(1,P,M-Q)) ) / EPS2
*
* Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
*
RESID = ZLANGE( '1', M-P, Q, XF(P+1,1), LDX, RWORK )
RESULT( 3 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2
*
* Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) .
*
RESID = ZLANGE( '1', M-P, M-Q, XF(P+1,Q+1), LDX, RWORK )
RESULT( 4 ) = ( RESID / REAL(MAX(1,M-P,M-Q)) ) / EPS2
*
* Compute I - U1'*U1
*
CALL ZLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -REALONE,
$ U1, LDU1, REALONE, WORK, LDU1 )
*
* Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', P, WORK, LDU1, RWORK )
RESULT( 5 ) = ( RESID / REAL(MAX(1,P)) ) / ULP
*
* Compute I - U2'*U2
*
CALL ZLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
CALL ZHERK( 'Upper', 'Conjugate transpose', M-P, M-P, -REALONE,
$ U2, LDU2, REALONE, WORK, LDU2 )
*
* Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', M-P, WORK, LDU2, RWORK )
RESULT( 6 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP
*
* Compute I - V1T*V1T'
*
CALL ZLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
CALL ZHERK( 'Upper', 'No transpose', Q, Q, -REALONE,
$ V1T, LDV1T, REALONE, WORK, LDV1T )
*
* Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', Q, WORK, LDV1T, RWORK )
RESULT( 7 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP
*
* Compute I - V2T*V2T'
*
CALL ZLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T )
CALL ZHERK( 'Upper', 'No transpose', M-Q, M-Q, -REALONE,
$ V2T, LDV2T, REALONE, WORK, LDV2T )
*
* Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', M-Q, WORK, LDV2T, RWORK )
RESULT( 8 ) = ( RESID / REAL(MAX(1,M-Q)) ) / ULP
*
* Check sorting
*
RESULT( 9 ) = REALZERO
DO I = 1, R
IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
RESULT( 9 ) = ULPINV
END IF
IF( I.GT.1) THEN
IF ( THETA(I).LT.THETA(I-1) ) THEN
RESULT( 9 ) = ULPINV
END IF
END IF
END DO
*
* The second half of the routine checks the 2-by-1 CSD
*
CALL ZLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDX )
CALL ZHERK( 'Upper', 'Conjugate transpose', Q, M, -REALONE,
$ X, LDX, REALONE, WORK, LDX )
IF (M.GT.0) THEN
EPS2 = MAX( ULP,
$ ZLANGE( '1', Q, Q, WORK, LDX, RWORK ) / DBLE( M ) )
ELSE
EPS2 = ULP
END IF
R = MIN( P, M-P, Q, M-Q )
*
* Copy the matrix X to the array XF.
*
CALL ZLACPY( 'Full', M, M, X, LDX, XF, LDX )
*
* Compute the CSD
*
CALL ZUNCSD2BY1( 'Y', 'Y', 'Y', M, P, Q, XF(1,1), LDX, XF(P+1,1),
$ LDX, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, WORK,
$ LWORK, RWORK, 17*(R+2), IWORK, INFO )
*
* Compute [X11;X21] := diag(U1,U2)'*[X11;X21]*V1 - [D11;D21]
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
$ X, LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
$ U1, LDU1, WORK, LDX, ZERO, X, LDX )
*
DO I = 1, MIN(P,Q)-R
X(I,I) = X(I,I) - ONE
END DO
DO I = 1, R
X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
$ X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - DCMPLX( COS(THETA(I)),
$ 0.0D0 )
END DO
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
$ X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
$ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX )
*
DO I = 1, MIN(M-P,Q)-R
X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE
END DO
DO I = 1, R
X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
$ X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
$ DCMPLX( SIN(THETA(R-I+1)), 0.0D0 )
END DO
*
* Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
*
RESID = ZLANGE( '1', P, Q, X, LDX, RWORK )
RESULT( 10 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2
*
* Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
*
RESID = ZLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK )
RESULT( 11 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2
*
* Compute I - U1'*U1
*
CALL ZLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -REALONE,
$ U1, LDU1, REALONE, WORK, LDU1 )
*
* Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', P, WORK, LDU1, RWORK )
RESULT( 12 ) = ( RESID / REAL(MAX(1,P)) ) / ULP
*
* Compute I - U2'*U2
*
CALL ZLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
CALL ZHERK( 'Upper', 'Conjugate transpose', M-P, M-P, -REALONE,
$ U2, LDU2, REALONE, WORK, LDU2 )
*
* Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', M-P, WORK, LDU2, RWORK )
RESULT( 13 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP
*
* Compute I - V1T*V1T'
*
CALL ZLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
CALL ZHERK( 'Upper', 'No transpose', Q, Q, -REALONE,
$ V1T, LDV1T, REALONE, WORK, LDV1T )
*
* Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', Q, WORK, LDV1T, RWORK )
RESULT( 14 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP
*
* Check sorting
*
RESULT( 15 ) = REALZERO
DO I = 1, R
IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
RESULT( 15 ) = ULPINV
END IF
IF( I.GT.1) THEN
IF ( THETA(I).LT.THETA(I-1) ) THEN
RESULT( 15 ) = ULPINV
END IF
END IF
END DO
*
RETURN
*
* End of ZCSDTS
*
END