You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
442 lines
13 KiB
442 lines
13 KiB
2 years ago
|
*> \brief \b ZLARHS
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLARHS( PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS,
|
||
|
* A, LDA, X, LDX, B, LDB, ISEED, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANS, UPLO, XTYPE
|
||
|
* CHARACTER*3 PATH
|
||
|
* INTEGER INFO, KL, KU, LDA, LDB, LDX, M, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER ISEED( 4 )
|
||
|
* COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZLARHS chooses a set of NRHS random solution vectors and sets
|
||
|
*> up the right hand sides for the linear system
|
||
|
*> op(A) * X = B,
|
||
|
*> where op(A) = A, A**T, or A**H, depending on TRANS.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] PATH
|
||
|
*> \verbatim
|
||
|
*> PATH is CHARACTER*3
|
||
|
*> The type of the complex matrix A. PATH may be given in any
|
||
|
*> combination of upper and lower case. Valid paths include
|
||
|
*> xGE: General m x n matrix
|
||
|
*> xGB: General banded matrix
|
||
|
*> xPO: Hermitian positive definite, 2-D storage
|
||
|
*> xPP: Hermitian positive definite packed
|
||
|
*> xPB: Hermitian positive definite banded
|
||
|
*> xHE: Hermitian indefinite, 2-D storage
|
||
|
*> xHP: Hermitian indefinite packed
|
||
|
*> xHB: Hermitian indefinite banded
|
||
|
*> xSY: Symmetric indefinite, 2-D storage
|
||
|
*> xSP: Symmetric indefinite packed
|
||
|
*> xSB: Symmetric indefinite banded
|
||
|
*> xTR: Triangular
|
||
|
*> xTP: Triangular packed
|
||
|
*> xTB: Triangular banded
|
||
|
*> xQR: General m x n matrix
|
||
|
*> xLQ: General m x n matrix
|
||
|
*> xQL: General m x n matrix
|
||
|
*> xRQ: General m x n matrix
|
||
|
*> where the leading character indicates the precision.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] XTYPE
|
||
|
*> \verbatim
|
||
|
*> XTYPE is CHARACTER*1
|
||
|
*> Specifies how the exact solution X will be determined:
|
||
|
*> = 'N': New solution; generate a random X.
|
||
|
*> = 'C': Computed; use value of X on entry.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Used only if A is symmetric or triangular; specifies whether
|
||
|
*> the upper or lower triangular part of the matrix A is stored.
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> Used only if A is nonsymmetric; specifies the operation
|
||
|
*> applied to the matrix A.
|
||
|
*> = 'N': B := A * X (No transpose)
|
||
|
*> = 'T': B := A**T * X (Transpose)
|
||
|
*> = 'C': B := A**H * X (Conjugate transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> Used only if A is a band matrix; specifies the number of
|
||
|
*> subdiagonals of A if A is a general band matrix or if A is
|
||
|
*> symmetric or triangular and UPLO = 'L'; specifies the number
|
||
|
*> of superdiagonals of A if A is symmetric or triangular and
|
||
|
*> UPLO = 'U'. 0 <= KL <= M-1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> Used only if A is a general band matrix or if A is
|
||
|
*> triangular.
|
||
|
*>
|
||
|
*> If PATH = xGB, specifies the number of superdiagonals of A,
|
||
|
*> and 0 <= KU <= N-1.
|
||
|
*>
|
||
|
*> If PATH = xTR, xTP, or xTB, specifies whether or not the
|
||
|
*> matrix has unit diagonal:
|
||
|
*> = 1: matrix has non-unit diagonal (default)
|
||
|
*> = 2: matrix has unit diagonal
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand side vectors in the system A*X = B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> The test matrix whose type is given by PATH.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A.
|
||
|
*> If PATH = xGB, LDA >= KL+KU+1.
|
||
|
*> If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1.
|
||
|
*> Otherwise, LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] X
|
||
|
*> \verbatim
|
||
|
*> X is or output) COMPLEX*16 array, dimension (LDX,NRHS)
|
||
|
*> On entry, if XTYPE = 'C' (for 'Computed'), then X contains
|
||
|
*> the exact solution to the system of linear equations.
|
||
|
*> On exit, if XTYPE = 'N' (for 'New'), then X is initialized
|
||
|
*> with random values.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. If TRANS = 'N',
|
||
|
*> LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
|
||
|
*> The right hand side vector(s) for the system of equations,
|
||
|
*> computed from B = op(A) * X, where op(A) is determined by
|
||
|
*> TRANS.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. If TRANS = 'N',
|
||
|
*> LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> The seed vector for the random number generator (used in
|
||
|
*> ZLATMS). Modified on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLARHS( PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS,
|
||
|
$ A, LDA, X, LDX, B, LDB, ISEED, INFO )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANS, UPLO, XTYPE
|
||
|
CHARACTER*3 PATH
|
||
|
INTEGER INFO, KL, KU, LDA, LDB, LDX, M, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX*16 ONE, ZERO
|
||
|
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
|
||
|
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL BAND, GEN, NOTRAN, QRS, SYM, TRAN, TRI
|
||
|
CHARACTER C1, DIAG
|
||
|
CHARACTER*2 C2
|
||
|
INTEGER J, MB, NX
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME, LSAMEN
|
||
|
EXTERNAL LSAME, LSAMEN
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZGBMV, ZGEMM, ZHBMV, ZHEMM, ZHPMV,
|
||
|
$ ZLACPY, ZLARNV, ZSBMV, ZSPMV, ZSYMM, ZTBMV,
|
||
|
$ ZTPMV, ZTRMM
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
C1 = PATH( 1: 1 )
|
||
|
C2 = PATH( 2: 3 )
|
||
|
TRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
|
||
|
NOTRAN = .NOT.TRAN
|
||
|
GEN = LSAME( PATH( 2: 2 ), 'G' )
|
||
|
QRS = LSAME( PATH( 2: 2 ), 'Q' ) .OR. LSAME( PATH( 3: 3 ), 'Q' )
|
||
|
SYM = LSAME( PATH( 2: 2 ), 'P' ) .OR.
|
||
|
$ LSAME( PATH( 2: 2 ), 'S' ) .OR. LSAME( PATH( 2: 2 ), 'H' )
|
||
|
TRI = LSAME( PATH( 2: 2 ), 'T' )
|
||
|
BAND = LSAME( PATH( 3: 3 ), 'B' )
|
||
|
IF( .NOT.LSAME( C1, 'Zomplex precision' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( LSAME( XTYPE, 'N' ) .OR. LSAME( XTYPE, 'C' ) ) )
|
||
|
$ THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( ( SYM .OR. TRI ) .AND. .NOT.
|
||
|
$ ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( ( GEN .OR. QRS ) .AND. .NOT.
|
||
|
$ ( TRAN .OR. LSAME( TRANS, 'N' ) ) ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( M.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( BAND .AND. KL.LT.0 ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( BAND .AND. KU.LT.0 ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( ( .NOT.BAND .AND. LDA.LT.MAX( 1, M ) ) .OR.
|
||
|
$ ( BAND .AND. ( SYM .OR. TRI ) .AND. LDA.LT.KL+1 ) .OR.
|
||
|
$ ( BAND .AND. GEN .AND. LDA.LT.KL+KU+1 ) ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF( ( NOTRAN .AND. LDX.LT.MAX( 1, N ) ) .OR.
|
||
|
$ ( TRAN .AND. LDX.LT.MAX( 1, M ) ) ) THEN
|
||
|
INFO = -13
|
||
|
ELSE IF( ( NOTRAN .AND. LDB.LT.MAX( 1, M ) ) .OR.
|
||
|
$ ( TRAN .AND. LDB.LT.MAX( 1, N ) ) ) THEN
|
||
|
INFO = -15
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZLARHS', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize X to NRHS random vectors unless XTYPE = 'C'.
|
||
|
*
|
||
|
IF( TRAN ) THEN
|
||
|
NX = M
|
||
|
MB = N
|
||
|
ELSE
|
||
|
NX = N
|
||
|
MB = M
|
||
|
END IF
|
||
|
IF( .NOT.LSAME( XTYPE, 'C' ) ) THEN
|
||
|
DO 10 J = 1, NRHS
|
||
|
CALL ZLARNV( 2, ISEED, N, X( 1, J ) )
|
||
|
10 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Multiply X by op(A) using an appropriate
|
||
|
* matrix multiply routine.
|
||
|
*
|
||
|
IF( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'QR' ) .OR.
|
||
|
$ LSAMEN( 2, C2, 'LQ' ) .OR. LSAMEN( 2, C2, 'QL' ) .OR.
|
||
|
$ LSAMEN( 2, C2, 'RQ' ) ) THEN
|
||
|
*
|
||
|
* General matrix
|
||
|
*
|
||
|
CALL ZGEMM( TRANS, 'N', MB, NRHS, NX, ONE, A, LDA, X, LDX,
|
||
|
$ ZERO, B, LDB )
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'HE' ) ) THEN
|
||
|
*
|
||
|
* Hermitian matrix, 2-D storage
|
||
|
*
|
||
|
CALL ZHEMM( 'Left', UPLO, N, NRHS, ONE, A, LDA, X, LDX, ZERO,
|
||
|
$ B, LDB )
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'SY' ) ) THEN
|
||
|
*
|
||
|
* Symmetric matrix, 2-D storage
|
||
|
*
|
||
|
CALL ZSYMM( 'Left', UPLO, N, NRHS, ONE, A, LDA, X, LDX, ZERO,
|
||
|
$ B, LDB )
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
|
||
|
*
|
||
|
* General matrix, band storage
|
||
|
*
|
||
|
DO 20 J = 1, NRHS
|
||
|
CALL ZGBMV( TRANS, M, N, KL, KU, ONE, A, LDA, X( 1, J ), 1,
|
||
|
$ ZERO, B( 1, J ), 1 )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'PB' ) .OR. LSAMEN( 2, C2, 'HB' ) ) THEN
|
||
|
*
|
||
|
* Hermitian matrix, band storage
|
||
|
*
|
||
|
DO 30 J = 1, NRHS
|
||
|
CALL ZHBMV( UPLO, N, KL, ONE, A, LDA, X( 1, J ), 1, ZERO,
|
||
|
$ B( 1, J ), 1 )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'SB' ) ) THEN
|
||
|
*
|
||
|
* Symmetric matrix, band storage
|
||
|
*
|
||
|
DO 40 J = 1, NRHS
|
||
|
CALL ZSBMV( UPLO, N, KL, ONE, A, LDA, X( 1, J ), 1, ZERO,
|
||
|
$ B( 1, J ), 1 )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'PP' ) .OR. LSAMEN( 2, C2, 'HP' ) ) THEN
|
||
|
*
|
||
|
* Hermitian matrix, packed storage
|
||
|
*
|
||
|
DO 50 J = 1, NRHS
|
||
|
CALL ZHPMV( UPLO, N, ONE, A, X( 1, J ), 1, ZERO, B( 1, J ),
|
||
|
$ 1 )
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
|
||
|
*
|
||
|
* Symmetric matrix, packed storage
|
||
|
*
|
||
|
DO 60 J = 1, NRHS
|
||
|
CALL ZSPMV( UPLO, N, ONE, A, X( 1, J ), 1, ZERO, B( 1, J ),
|
||
|
$ 1 )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN
|
||
|
*
|
||
|
* Triangular matrix. Note that for triangular matrices,
|
||
|
* KU = 1 => non-unit triangular
|
||
|
* KU = 2 => unit triangular
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, X, LDX, B, LDB )
|
||
|
IF( KU.EQ.2 ) THEN
|
||
|
DIAG = 'U'
|
||
|
ELSE
|
||
|
DIAG = 'N'
|
||
|
END IF
|
||
|
CALL ZTRMM( 'Left', UPLO, TRANS, DIAG, N, NRHS, ONE, A, LDA, B,
|
||
|
$ LDB )
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN
|
||
|
*
|
||
|
* Triangular matrix, packed storage
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, X, LDX, B, LDB )
|
||
|
IF( KU.EQ.2 ) THEN
|
||
|
DIAG = 'U'
|
||
|
ELSE
|
||
|
DIAG = 'N'
|
||
|
END IF
|
||
|
DO 70 J = 1, NRHS
|
||
|
CALL ZTPMV( UPLO, TRANS, DIAG, N, A, B( 1, J ), 1 )
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
|
||
|
*
|
||
|
* Triangular matrix, banded storage
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, X, LDX, B, LDB )
|
||
|
IF( KU.EQ.2 ) THEN
|
||
|
DIAG = 'U'
|
||
|
ELSE
|
||
|
DIAG = 'N'
|
||
|
END IF
|
||
|
DO 80 J = 1, NRHS
|
||
|
CALL ZTBMV( UPLO, TRANS, DIAG, N, KL, A, LDA, B( 1, J ), 1 )
|
||
|
80 CONTINUE
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* If none of the above, set INFO = -1 and return
|
||
|
*
|
||
|
INFO = -1
|
||
|
CALL XERBLA( 'ZLARHS', -INFO )
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLARHS
|
||
|
*
|
||
|
END
|