Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

576 lines
18 KiB

2 years ago
*> \brief \b CCHKHP
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CCHKHP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
* NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK,
* IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NMAX, NN, NNS, NOUT
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
* REAL RWORK( * )
* COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
* $ WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CCHKHP tests CHPTRF, -TRI, -TRS, -RFS, and -CON
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension
*> (NMAX*(NMAX+1)/2)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX array, dimension
*> (NMAX*(NMAX+1)/2)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*> AINV is COMPLEX array, dimension
*> (NMAX*(NMAX+1)/2)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (NMAX*NSMAX)
*> where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension
*> (NMAX*max(2,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array,
*> dimension (NMAX+2*NSMAX)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CCHKHP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK,
$ IWORK, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NMAX, NN, NNS, NOUT
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
REAL RWORK( * )
COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
$ WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 10 )
INTEGER NTESTS
PARAMETER ( NTESTS = 8 )
* ..
* .. Local Scalars ..
LOGICAL TRFCON, ZEROT
CHARACTER DIST, PACKIT, TYPE, UPLO, XTYPE
CHARACTER*3 PATH
INTEGER I, I1, I2, IMAT, IN, INFO, IOFF, IRHS, IUPLO,
$ IZERO, J, K, KL, KU, LDA, MODE, N, NERRS,
$ NFAIL, NIMAT, NPP, NRHS, NRUN, NT
REAL ANORM, CNDNUM, RCOND, RCONDC
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
REAL RESULT( NTESTS )
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANHP, SGET06
EXTERNAL LSAME, CLANHP, SGET06
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, CCOPY, CERRSY, CGET04,
$ CHPCON, CHPRFS, CHPT01, CHPTRF, CHPTRI, CHPTRS,
$ CLACPY, CLAIPD, CLARHS, CLATB4, CLATMS, CPPT02,
$ CPPT03, CPPT05
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Complex precision'
PATH( 2: 3 ) = 'HP'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL CERRSY( PATH, NOUT )
INFOT = 0
*
* Do for each value of N in NVAL
*
DO 170 IN = 1, NN
N = NVAL( IN )
LDA = MAX( N, 1 )
XTYPE = 'N'
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
IZERO = 0
DO 160 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 160
*
* Skip types 3, 4, 5, or 6 if the matrix size is too small.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
IF( ZEROT .AND. N.LT.IMAT-2 )
$ GO TO 160
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 150 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
IF( LSAME( UPLO, 'U' ) ) THEN
PACKIT = 'C'
ELSE
PACKIT = 'R'
END IF
*
* Set up parameters with CLATB4 and generate a test matrix
* with CLATMS.
*
CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
*
SRNAMT = 'CLATMS'
CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
$ INFO )
*
* Check error code from CLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 150
END IF
*
* For types 3-6, zero one or more rows and columns of
* the matrix to test that INFO is returned correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
*
IF( IMAT.LT.6 ) THEN
*
* Set row and column IZERO to zero.
*
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*IZERO / 2
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = ZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = ZERO
IOFF = IOFF + I
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = ZERO
IOFF = IOFF + N - I
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = ZERO
50 CONTINUE
END IF
ELSE
IOFF = 0
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
A( IOFF+I ) = ZERO
60 CONTINUE
IOFF = IOFF + J
70 CONTINUE
ELSE
*
* Set the last IZERO rows and columns to zero.
*
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
A( IOFF+I ) = ZERO
80 CONTINUE
IOFF = IOFF + N - J
90 CONTINUE
END IF
END IF
ELSE
IZERO = 0
END IF
*
* Set the imaginary part of the diagonals.
*
IF( IUPLO.EQ.1 ) THEN
CALL CLAIPD( N, A, 2, 1 )
ELSE
CALL CLAIPD( N, A, N, -1 )
END IF
*
* Compute the L*D*L' or U*D*U' factorization of the matrix.
*
NPP = N*( N+1 ) / 2
CALL CCOPY( NPP, A, 1, AFAC, 1 )
SRNAMT = 'CHPTRF'
CALL CHPTRF( UPLO, N, AFAC, IWORK, INFO )
*
* Adjust the expected value of INFO to account for
* pivoting.
*
K = IZERO
IF( K.GT.0 ) THEN
100 CONTINUE
IF( IWORK( K ).LT.0 ) THEN
IF( IWORK( K ).NE.-K ) THEN
K = -IWORK( K )
GO TO 100
END IF
ELSE IF( IWORK( K ).NE.K ) THEN
K = IWORK( K )
GO TO 100
END IF
END IF
*
* Check error code from CHPTRF.
*
IF( INFO.NE.K )
$ CALL ALAERH( PATH, 'CHPTRF', INFO, K, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
IF( INFO.NE.0 ) THEN
TRFCON = .TRUE.
ELSE
TRFCON = .FALSE.
END IF
*
*+ TEST 1
* Reconstruct matrix from factors and compute residual.
*
CALL CHPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA, RWORK,
$ RESULT( 1 ) )
NT = 1
*
*+ TEST 2
* Form the inverse and compute the residual.
*
IF( .NOT.TRFCON ) THEN
CALL CCOPY( NPP, AFAC, 1, AINV, 1 )
SRNAMT = 'CHPTRI'
CALL CHPTRI( UPLO, N, AINV, IWORK, WORK, INFO )
*
* Check error code from CHPTRI.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHPTRI', INFO, 0, UPLO, N, N,
$ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
*
CALL CPPT03( UPLO, N, A, AINV, WORK, LDA, RWORK,
$ RCONDC, RESULT( 2 ) )
NT = 2
END IF
*
* Print information about the tests that did not pass
* the threshold.
*
DO 110 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )UPLO, N, IMAT, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
110 CONTINUE
NRUN = NRUN + NT
*
* Do only the condition estimate if INFO is not 0.
*
IF( TRFCON ) THEN
RCONDC = ZERO
GO TO 140
END IF
*
DO 130 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
*
*+ TEST 3
* Solve and compute residual for A * X = B.
*
SRNAMT = 'CLARHS'
CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
$ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
$ INFO )
XTYPE = 'C'
CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
SRNAMT = 'CHPTRS'
CALL CHPTRS( UPLO, N, NRHS, AFAC, IWORK, X, LDA,
$ INFO )
*
* Check error code from CHPTRS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHPTRS', INFO, 0, UPLO, N, N,
$ -1, -1, NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL CPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA,
$ RWORK, RESULT( 3 ) )
*
*+ TEST 4
* Check solution from generated exact solution.
*
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 4 ) )
*
*+ TESTS 5, 6, and 7
* Use iterative refinement to improve the solution.
*
SRNAMT = 'CHPRFS'
CALL CHPRFS( UPLO, N, NRHS, A, AFAC, IWORK, B, LDA, X,
$ LDA, RWORK, RWORK( NRHS+1 ), WORK,
$ RWORK( 2*NRHS+1 ), INFO )
*
* Check error code from CHPRFS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHPRFS', INFO, 0, UPLO, N, N,
$ -1, -1, NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 5 ) )
CALL CPPT05( UPLO, N, NRHS, A, B, LDA, X, LDA, XACT,
$ LDA, RWORK, RWORK( NRHS+1 ),
$ RESULT( 6 ) )
*
* Print information about the tests that did not pass
* the threshold.
*
DO 120 K = 3, 7
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, IMAT,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
120 CONTINUE
NRUN = NRUN + 5
130 CONTINUE
*
*+ TEST 8
* Get an estimate of RCOND = 1/CNDNUM.
*
140 CONTINUE
ANORM = CLANHP( '1', UPLO, N, A, RWORK )
SRNAMT = 'CHPCON'
CALL CHPCON( UPLO, N, AFAC, IWORK, ANORM, RCOND, WORK,
$ INFO )
*
* Check error code from CHPCON.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CHPCON', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
*
RESULT( 8 ) = SGET06( RCOND, RCONDC )
*
* Print the test ratio if it is .GE. THRESH.
*
IF( RESULT( 8 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )UPLO, N, IMAT, 8,
$ RESULT( 8 )
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1
150 CONTINUE
160 CONTINUE
170 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', type ', I2, ', test ',
$ I2, ', ratio =', G12.5 )
9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
$ I2, ', test(', I2, ') =', G12.5 )
RETURN
*
* End of CCHKHP
*
END