You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
6.5 KiB
243 lines
6.5 KiB
2 years ago
|
*> \brief \b CGBT01
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
|
||
|
* RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER KL, KU, LDA, LDAFAC, M, N
|
||
|
* REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CGBT01 reconstructs a band matrix A from its L*U factorization and
|
||
|
*> computes the residual:
|
||
|
*> norm(L*U - A) / ( N * norm(A) * EPS ),
|
||
|
*> where EPS is the machine epsilon.
|
||
|
*>
|
||
|
*> The expression L*U - A is computed one column at a time, so A and
|
||
|
*> AFAC are not modified.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> The original matrix A in band storage, stored in rows 1 to
|
||
|
*> KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER.
|
||
|
*> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AFAC
|
||
|
*> \verbatim
|
||
|
*> AFAC is COMPLEX array, dimension (LDAFAC,N)
|
||
|
*> The factored form of the matrix A. AFAC contains the banded
|
||
|
*> factors L and U from the L*U factorization, as computed by
|
||
|
*> CGBTRF. U is stored as an upper triangular band matrix with
|
||
|
*> KL+KU superdiagonals in rows 1 to KL+KU+1, and the
|
||
|
*> multipliers used during the factorization are stored in rows
|
||
|
*> KL+KU+2 to 2*KL+KU+1. See CGBTRF for further details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAFAC
|
||
|
*> \verbatim
|
||
|
*> LDAFAC is INTEGER
|
||
|
*> The leading dimension of the array AFAC.
|
||
|
*> LDAFAC >= max(1,2*KL*KU+1).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (min(M,N))
|
||
|
*> The pivot indices from CGBTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (2*KL+KU+1)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is REAL
|
||
|
*> norm(L*U - A) / ( N * norm(A) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
|
||
|
$ RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER KL, KU, LDA, LDAFAC, M, N
|
||
|
REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
|
||
|
REAL ANORM, EPS
|
||
|
COMPLEX T
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SCASUM, SLAMCH
|
||
|
EXTERNAL SCASUM, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CAXPY, CCOPY
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC CMPLX, MAX, MIN, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick exit if M = 0 or N = 0.
|
||
|
*
|
||
|
RESID = ZERO
|
||
|
IF( M.LE.0 .OR. N.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Determine EPS and the norm of A.
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
KD = KU + 1
|
||
|
ANORM = ZERO
|
||
|
DO 10 J = 1, N
|
||
|
I1 = MAX( KD+1-J, 1 )
|
||
|
I2 = MIN( KD+M-J, KL+KD )
|
||
|
IF( I2.GE.I1 )
|
||
|
$ ANORM = MAX( ANORM, SCASUM( I2-I1+1, A( I1, J ), 1 ) )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Compute one column at a time of L*U - A.
|
||
|
*
|
||
|
KD = KL + KU + 1
|
||
|
DO 40 J = 1, N
|
||
|
*
|
||
|
* Copy the J-th column of U to WORK.
|
||
|
*
|
||
|
JU = MIN( KL+KU, J-1 )
|
||
|
JL = MIN( KL, M-J )
|
||
|
LENJ = MIN( M, J ) - J + JU + 1
|
||
|
IF( LENJ.GT.0 ) THEN
|
||
|
CALL CCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
|
||
|
DO 20 I = LENJ + 1, JU + JL + 1
|
||
|
WORK( I ) = ZERO
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Multiply by the unit lower triangular matrix L. Note that L
|
||
|
* is stored as a product of transformations and permutations.
|
||
|
*
|
||
|
DO 30 I = MIN( M-1, J ), J - JU, -1
|
||
|
IL = MIN( KL, M-I )
|
||
|
IF( IL.GT.0 ) THEN
|
||
|
IW = I - J + JU + 1
|
||
|
T = WORK( IW )
|
||
|
CALL CAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
|
||
|
$ 1 )
|
||
|
IP = IPIV( I )
|
||
|
IF( I.NE.IP ) THEN
|
||
|
IP = IP - J + JU + 1
|
||
|
WORK( IW ) = WORK( IP )
|
||
|
WORK( IP ) = T
|
||
|
END IF
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Subtract the corresponding column of A.
|
||
|
*
|
||
|
JUA = MIN( JU, KU )
|
||
|
IF( JUA+JL+1.GT.0 )
|
||
|
$ CALL CAXPY( JUA+JL+1, -CMPLX( ONE ), A( KU+1-JUA, J ), 1,
|
||
|
$ WORK( JU+1-JUA ), 1 )
|
||
|
*
|
||
|
* Compute the 1-norm of the column.
|
||
|
*
|
||
|
RESID = MAX( RESID, SCASUM( JU+JL+1, WORK, 1 ) )
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Compute norm(L*U - A) / ( N * norm(A) * EPS )
|
||
|
*
|
||
|
IF( ANORM.LE.ZERO ) THEN
|
||
|
IF( RESID.NE.ZERO )
|
||
|
$ RESID = ONE / EPS
|
||
|
ELSE
|
||
|
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGBT01
|
||
|
*
|
||
|
END
|