You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
6.9 KiB
259 lines
6.9 KiB
2 years ago
|
*> \brief \b CLATSY
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLATSY( UPLO, N, X, LDX, ISEED )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER LDX, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER ISEED( * )
|
||
|
* COMPLEX X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLATSY generates a special test matrix for the complex symmetric
|
||
|
*> (indefinite) factorization. The pivot blocks of the generated matrix
|
||
|
*> will be in the following order:
|
||
|
*> 2x2 pivot block, non diagonalizable
|
||
|
*> 1x1 pivot block
|
||
|
*> 2x2 pivot block, diagonalizable
|
||
|
*> (cycle repeats)
|
||
|
*> A row interchange is required for each non-diagonalizable 2x2 block.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER
|
||
|
*> Specifies whether the generated matrix is to be upper or
|
||
|
*> lower triangular.
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The dimension of the matrix to be generated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX array, dimension (LDX,N)
|
||
|
*> The generated matrix, consisting of 3x3 and 2x2 diagonal
|
||
|
*> blocks which result in the pivot sequence given above.
|
||
|
*> The matrix outside of these diagonal blocks is zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] ISEED
|
||
|
*> \verbatim
|
||
|
*> ISEED is INTEGER array, dimension (4)
|
||
|
*> On entry, the seed for the random number generator. The last
|
||
|
*> of the four integers must be odd. (modified on exit)
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLATSY( UPLO, N, X, LDX, ISEED )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER LDX, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER ISEED( * )
|
||
|
COMPLEX X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX EYE
|
||
|
PARAMETER ( EYE = ( 0.0, 1.0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J, N5
|
||
|
REAL ALPHA, ALPHA3, BETA
|
||
|
COMPLEX A, B, C, R
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
COMPLEX CLARND
|
||
|
EXTERNAL CLARND
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Initialize constants
|
||
|
*
|
||
|
ALPHA = ( 1.+SQRT( 17. ) ) / 8.
|
||
|
BETA = ALPHA - 1. / 1000.
|
||
|
ALPHA3 = ALPHA*ALPHA*ALPHA
|
||
|
*
|
||
|
* UPLO = 'U': Upper triangular storage
|
||
|
*
|
||
|
IF( UPLO.EQ.'U' ) THEN
|
||
|
*
|
||
|
* Fill the upper triangle of the matrix with zeros.
|
||
|
*
|
||
|
DO 20 J = 1, N
|
||
|
DO 10 I = 1, J
|
||
|
X( I, J ) = 0.0
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
N5 = N / 5
|
||
|
N5 = N - 5*N5 + 1
|
||
|
*
|
||
|
DO 30 I = N, N5, -5
|
||
|
A = ALPHA3*CLARND( 5, ISEED )
|
||
|
B = CLARND( 5, ISEED ) / ALPHA
|
||
|
C = A - 2.*B*EYE
|
||
|
R = C / BETA
|
||
|
X( I, I ) = A
|
||
|
X( I-2, I ) = B
|
||
|
X( I-2, I-1 ) = R
|
||
|
X( I-2, I-2 ) = C
|
||
|
X( I-1, I-1 ) = CLARND( 2, ISEED )
|
||
|
X( I-3, I-3 ) = CLARND( 2, ISEED )
|
||
|
X( I-4, I-4 ) = CLARND( 2, ISEED )
|
||
|
IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN
|
||
|
X( I-4, I-3 ) = 2.0*X( I-3, I-3 )
|
||
|
ELSE
|
||
|
X( I-4, I-3 ) = 2.0*X( I-4, I-4 )
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Clean-up for N not a multiple of 5.
|
||
|
*
|
||
|
I = N5 - 1
|
||
|
IF( I.GT.2 ) THEN
|
||
|
A = ALPHA3*CLARND( 5, ISEED )
|
||
|
B = CLARND( 5, ISEED ) / ALPHA
|
||
|
C = A - 2.*B*EYE
|
||
|
R = C / BETA
|
||
|
X( I, I ) = A
|
||
|
X( I-2, I ) = B
|
||
|
X( I-2, I-1 ) = R
|
||
|
X( I-2, I-2 ) = C
|
||
|
X( I-1, I-1 ) = CLARND( 2, ISEED )
|
||
|
I = I - 3
|
||
|
END IF
|
||
|
IF( I.GT.1 ) THEN
|
||
|
X( I, I ) = CLARND( 2, ISEED )
|
||
|
X( I-1, I-1 ) = CLARND( 2, ISEED )
|
||
|
IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN
|
||
|
X( I-1, I ) = 2.0*X( I, I )
|
||
|
ELSE
|
||
|
X( I-1, I ) = 2.0*X( I-1, I-1 )
|
||
|
END IF
|
||
|
I = I - 2
|
||
|
ELSE IF( I.EQ.1 ) THEN
|
||
|
X( I, I ) = CLARND( 2, ISEED )
|
||
|
I = I - 1
|
||
|
END IF
|
||
|
*
|
||
|
* UPLO = 'L': Lower triangular storage
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Fill the lower triangle of the matrix with zeros.
|
||
|
*
|
||
|
DO 50 J = 1, N
|
||
|
DO 40 I = J, N
|
||
|
X( I, J ) = 0.0
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
N5 = N / 5
|
||
|
N5 = N5*5
|
||
|
*
|
||
|
DO 60 I = 1, N5, 5
|
||
|
A = ALPHA3*CLARND( 5, ISEED )
|
||
|
B = CLARND( 5, ISEED ) / ALPHA
|
||
|
C = A - 2.*B*EYE
|
||
|
R = C / BETA
|
||
|
X( I, I ) = A
|
||
|
X( I+2, I ) = B
|
||
|
X( I+2, I+1 ) = R
|
||
|
X( I+2, I+2 ) = C
|
||
|
X( I+1, I+1 ) = CLARND( 2, ISEED )
|
||
|
X( I+3, I+3 ) = CLARND( 2, ISEED )
|
||
|
X( I+4, I+4 ) = CLARND( 2, ISEED )
|
||
|
IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN
|
||
|
X( I+4, I+3 ) = 2.0*X( I+3, I+3 )
|
||
|
ELSE
|
||
|
X( I+4, I+3 ) = 2.0*X( I+4, I+4 )
|
||
|
END IF
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* Clean-up for N not a multiple of 5.
|
||
|
*
|
||
|
I = N5 + 1
|
||
|
IF( I.LT.N-1 ) THEN
|
||
|
A = ALPHA3*CLARND( 5, ISEED )
|
||
|
B = CLARND( 5, ISEED ) / ALPHA
|
||
|
C = A - 2.*B*EYE
|
||
|
R = C / BETA
|
||
|
X( I, I ) = A
|
||
|
X( I+2, I ) = B
|
||
|
X( I+2, I+1 ) = R
|
||
|
X( I+2, I+2 ) = C
|
||
|
X( I+1, I+1 ) = CLARND( 2, ISEED )
|
||
|
I = I + 3
|
||
|
END IF
|
||
|
IF( I.LT.N ) THEN
|
||
|
X( I, I ) = CLARND( 2, ISEED )
|
||
|
X( I+1, I+1 ) = CLARND( 2, ISEED )
|
||
|
IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN
|
||
|
X( I+1, I ) = 2.0*X( I, I )
|
||
|
ELSE
|
||
|
X( I+1, I ) = 2.0*X( I+1, I+1 )
|
||
|
END IF
|
||
|
I = I + 2
|
||
|
ELSE IF( I.EQ.N ) THEN
|
||
|
X( I, I ) = CLARND( 2, ISEED )
|
||
|
I = I + 1
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLATSY
|
||
|
*
|
||
|
END
|