You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
6.2 KiB
228 lines
6.2 KiB
2 years ago
|
*> \brief \b CLQT02
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
|
||
|
* RWORK, RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER K, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL RESULT( * ), RWORK( * )
|
||
|
* COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
|
||
|
* $ Q( LDA, * ), TAU( * ), WORK( LWORK )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
|
||
|
*> orthonormal rows that is defined as the product of k elementary
|
||
|
*> reflectors.
|
||
|
*>
|
||
|
*> Given the LQ factorization of an m-by-n matrix A, CLQT02 generates
|
||
|
*> the orthogonal matrix Q defined by the factorization of the first k
|
||
|
*> rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
|
||
|
*> checks that the rows of Q are orthonormal.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix Q to be generated. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix Q to be generated.
|
||
|
*> N >= M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> The number of elementary reflectors whose product defines the
|
||
|
*> matrix Q. M >= K >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> The m-by-n matrix A which was factorized by CLQT01.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AF
|
||
|
*> \verbatim
|
||
|
*> AF is COMPLEX array, dimension (LDA,N)
|
||
|
*> Details of the LQ factorization of A, as returned by CGELQF.
|
||
|
*> See CGELQF for further details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is COMPLEX array, dimension (LDA,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] L
|
||
|
*> \verbatim
|
||
|
*> L is COMPLEX array, dimension (LDA,M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the arrays A, AF, Q and L. LDA >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is COMPLEX array, dimension (M)
|
||
|
*> The scalar factors of the elementary reflectors corresponding
|
||
|
*> to the LQ factorization in AF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (LWORK)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is REAL array, dimension (2)
|
||
|
*> The test ratios:
|
||
|
*> RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
|
||
|
*> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
|
||
|
$ RWORK, RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER K, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL RESULT( * ), RWORK( * )
|
||
|
COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
|
||
|
$ Q( LDA, * ), TAU( * ), WORK( LWORK )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
COMPLEX ROGUE
|
||
|
PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER INFO
|
||
|
REAL ANORM, EPS, RESID
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL CLANGE, CLANSY, SLAMCH
|
||
|
EXTERNAL CLANGE, CLANSY, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMM, CHERK, CLACPY, CLASET, CUNGLQ
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC CMPLX, MAX, REAL
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
CHARACTER*32 SRNAMT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / SRNAMC / SRNAMT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
*
|
||
|
* Copy the first k rows of the factorization to the array Q
|
||
|
*
|
||
|
CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
|
||
|
CALL CLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
|
||
|
*
|
||
|
* Generate the first n columns of the matrix Q
|
||
|
*
|
||
|
SRNAMT = 'CUNGLQ'
|
||
|
CALL CUNGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* Copy L(1:k,1:m)
|
||
|
*
|
||
|
CALL CLASET( 'Full', K, M, CMPLX( ZERO ), CMPLX( ZERO ), L, LDA )
|
||
|
CALL CLACPY( 'Lower', K, M, AF, LDA, L, LDA )
|
||
|
*
|
||
|
* Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
|
||
|
*
|
||
|
CALL CGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
|
||
|
$ CMPLX( -ONE ), A, LDA, Q, LDA, CMPLX( ONE ), L, LDA )
|
||
|
*
|
||
|
* Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
|
||
|
*
|
||
|
ANORM = CLANGE( '1', K, N, A, LDA, RWORK )
|
||
|
RESID = CLANGE( '1', K, M, L, LDA, RWORK )
|
||
|
IF( ANORM.GT.ZERO ) THEN
|
||
|
RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
|
||
|
ELSE
|
||
|
RESULT( 1 ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Compute I - Q*Q'
|
||
|
*
|
||
|
CALL CLASET( 'Full', M, M, CMPLX( ZERO ), CMPLX( ONE ), L, LDA )
|
||
|
CALL CHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L,
|
||
|
$ LDA )
|
||
|
*
|
||
|
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
|
||
|
*
|
||
|
RESID = CLANSY( '1', 'Upper', M, L, LDA, RWORK )
|
||
|
*
|
||
|
RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLQT02
|
||
|
*
|
||
|
END
|